Your browser doesn't support javascript.
loading
A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation.
Huang, Zebin; Wang, Ziwei; Bai, Weibang; Huang, Yanpei; Sun, Lichao; Xiao, Bo; Yeatman, Eric M.
Afiliação
  • Huang Z; Department of Bioengineering, Imperial College London, London SW7 2BX, UK.
  • Wang Z; Department of Bioengineering, Imperial College London, London SW7 2BX, UK.
  • Bai W; Department of Computing, Imperial College London, London SW7 2BX, UK.
  • Huang Y; Department of Bioengineering, Imperial College London, London SW7 2BX, UK.
  • Sun L; School of Education, Communication & Society, King's College London, London SE5 9RJ, UK.
  • Xiao B; Department of Computing, Imperial College London, London SW7 2BX, UK.
  • Yeatman EM; Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BX, UK.
Sensors (Basel) ; 21(24)2021 Dec 14.
Article em En | MEDLINE | ID: mdl-34960435
Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Robótica Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Robótica Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article