Physiological trait networks enhance understanding of crop growth and water use in contrasting environments.
Plant Cell Environ
; 45(9): 2554-2572, 2022 09.
Article
em En
| MEDLINE
| ID: mdl-35735161
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Água
/
Estômatos de Plantas
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Plant Cell Environ
Assunto da revista:
BOTANICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos