Your browser doesn't support javascript.
loading
Using deep learning to detect patients at risk for prostate cancer despite benign biopsies.
Liu, Bojing; Wang, Yinxi; Weitz, Philippe; Lindberg, Johan; Hartman, Johan; Wang, Wanzhong; Egevad, Lars; Grönberg, Henrik; Eklund, Martin; Rantalainen, Mattias.
Afiliação
  • Liu B; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
  • Wang Y; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
  • Weitz P; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
  • Lindberg J; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
  • Hartman J; Department of Oncology-Pathology, Karolinska Institutet, Stockholm 171 64, Sweden.
  • Wang W; Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm 171 76, Sweden.
  • Egevad L; Department of Oncology-Pathology, Karolinska Institutet, Stockholm 171 64, Sweden.
  • Grönberg H; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
  • Eklund M; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
  • Rantalainen M; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171 77, Sweden.
iScience ; 25(7): 104663, 2022 Jul 15.
Article em En | MEDLINE | ID: mdl-35832894
Routine transrectal ultrasound-guided systematic prostate biopsy only samples a small volume of the prostate and tumors between biopsy cores can be missed, leading to low sensitivity to detect clinically relevant prostate cancers (PCa). Deep learning may enable detection of PCa despite benign biopsies. We included 14,354 hematoxylin-eosin stained benign prostate biopsies from 1,508 men in two groups: men without established PCa diagnosis and men with at least one core biopsy diagnosed with PCa. A 10-Convolutional Neural Network ensemble was optimized to distinguish benign biopsies from benign men or patients with PCa. Area under the receiver operating characteristic curve was estimated at 0.739 (bootstrap 95% CI:0.682-0.796) on man level in the held-out test set. At the specificity of 0.90, the model sensitivity was 0.348. The proposed model can detect men with risk of missed PCa and has the potential to reduce false negatives and to indicate men who could benefit from rebiopsies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: IScience Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: IScience Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Suécia