Your browser doesn't support javascript.
loading
Learned Block Iterative Shrinkage Thresholding Algorithm for Photothermal Super Resolution Imaging.
Hauffen, Jan Christian; Kästner, Linh; Ahmadi, Samim; Jung, Peter; Caire, Giuseppe; Ziegler, Mathias.
Afiliação
  • Hauffen JC; Communication and Information Theory, Berlin Institute of Technology, 10623 Berlin, Germany.
  • Kästner L; Industry Grade Networks and Clouds, Faculty of Electrical Engineering, and Computer Science, Berlin Institute of Technology, 10623 Berlin, Germany.
  • Ahmadi S; Department of Non-Destructive Testing, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany.
  • Jung P; Communication and Information Theory, Berlin Institute of Technology, 10623 Berlin, Germany.
  • Caire G; Communication and Information Theory, Berlin Institute of Technology, 10623 Berlin, Germany.
  • Ziegler M; Department of Non-Destructive Testing, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany.
Sensors (Basel) ; 22(15)2022 Jul 25.
Article em En | MEDLINE | ID: mdl-35898038
Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of regularization parameters, without the need to manually select them. In addition, LBISTA enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage thresholding using synthetically generated and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations. Thus, this allows us to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super-resolution imaging.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha