Early Prediction of COVID-19 Patient Survival by Targeted Plasma Multi-Omics and Machine Learning.
Mol Cell Proteomics
; 21(10): 100277, 2022 10.
Article
em En
| MEDLINE
| ID: mdl-35931319
The recent surge of coronavirus disease 2019 (COVID-19) hospitalizations severely challenges healthcare systems around the globe and has increased the demand for reliable tests predictive of disease severity and mortality. Using multiplexed targeted mass spectrometry assays on a robust triple quadrupole MS setup which is available in many clinical laboratories, we determined the precise concentrations of hundreds of proteins and metabolites in plasma from hospitalized COVID-19 patients. We observed a clear distinction between COVID-19 patients and controls and, strikingly, a significant difference between survivors and nonsurvivors. With increasing length of hospitalization, the survivors' samples showed a trend toward normal concentrations, indicating a potential sensitive readout of treatment success. Building a machine learning multi-omic model that considers the concentrations of 10 proteins and five metabolites, we could predict patient survival with 92% accuracy (area under the receiver operating characteristic curve: 0.97) on the day of hospitalization. Hence, our standardized assays represent a unique opportunity for the early stratification of hospitalized COVID-19 patients.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
COVID-19
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Mol Cell Proteomics
Assunto da revista:
BIOLOGIA MOLECULAR
/
BIOQUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Canadá