Your browser doesn't support javascript.
loading
Erythro-Magneto-HA-Virosome: A Bio-Inspired Drug Delivery System for Active Targeting of Drugs in the Lungs.
Vizzoca, Alessio; Lucarini, Gioia; Tognoni, Elisabetta; Tognarelli, Selene; Ricotti, Leonardo; Gherardini, Lisa; Pelosi, Gualtiero; Pellegrino, Mario; Menciassi, Arianna; Grimaldi, Settimio; Cinti, Caterina.
Afiliação
  • Vizzoca A; Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy, Via Gobetti 101, 40129 Bologna, Italy.
  • Lucarini G; The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
  • Tognoni E; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
  • Tognarelli S; National Institute of Optics (INO), National Research Council of Italy, Via G Moruzzi 1, 56124 Pisa, Italy.
  • Ricotti L; The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
  • Gherardini L; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
  • Pelosi G; The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
  • Pellegrino M; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
  • Menciassi A; Institute of Clinical Physiology (IFC), National Research Council of Italy, Via G Moruzzi 1, 56124 Pisa, Italy.
  • Grimaldi S; Institute of Clinical Physiology (IFC), National Research Council of Italy, Via G Moruzzi 1, 56124 Pisa, Italy.
  • Cinti C; National Institute of Optics (INO), National Research Council of Italy, Via G Moruzzi 1, 56124 Pisa, Italy.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article em En | MEDLINE | ID: mdl-36077300
ABSTRACT
Over the past few decades, finding more efficient and selective administration routes has gained significant attention due to its crucial role in the bioavailability, absorption rate and pharmacokinetics of therapeutic substances. The pulmonary delivery of drugs has become an attractive target of scientific and biomedical interest in the health care research area, as the lung, thanks to its high permeability and large absorptive surface area and good blood supply, is capable of absorbing pharmaceuticals either for local deposition or for systemic delivery. Nevertheless, the pulmonary drug delivery is relatively complex, and strategies to mitigate the effects of mechanical, chemical and immunological barriers are required. Herein, engineered erythrocytes, the Erythro-Magneto-Hemagglutinin (HA)-virosomes (EMHVs), are used as a novel strategy for efficiently delivering drugs to the lungs. EMHV bio-based carriers exploit the physical properties of magnetic nanoparticles to achieve effective targeting after their intravenous injection thanks to an external magnetic field. In addition, the presence of hemagglutinin fusion proteins on EMHVs' membrane allows the DDS to anchor and fuse with the target tissue and locally release the therapeutic compound. Our results on the biomechanical and biophysical properties of EMHVs, such as the membrane robustness and deformability and the high magnetic susceptibility, as well as their in vivo biodistribution, highlight that this bio-inspired DDS is a promising platform for the controlled and lung-targeting delivery of drugs, and represents a valuable alternative to inhalation therapy to fulfill unmet clinical needs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Virossomos / Nanopartículas Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Virossomos / Nanopartículas Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália