Your browser doesn't support javascript.
loading
Robust high spatio-temporal line-scanning fMRI in humans at 7T using multi-echo readouts, denoising and prospective motion correction.
Raimondo, Luisa; Priovoulos, Nikos; Passarinho, Catarina; Heij, Jurjen; Knapen, Tomas; Dumoulin, Serge O; Siero, Jeroen C W; van der Zwaag, Wietske.
Afiliação
  • Raimondo L; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 108
  • Priovoulos N; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands. Electronic address: n.priovoulos@spinozacentre.nl.
  • Passarinho C; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal. Electronic address: catarina.passarinho@tecnico.ulisboa.pt.
  • Heij J; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 108
  • Knapen T; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 108
  • Dumoulin SO; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental Psychology, Utrecht University, PO Box 80125, 3508 TC Utrecht
  • Siero JCW; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Radiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands. Electronic address: j.c.w.siero@umcutrecht.nl.
  • van der Zwaag W; Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands. Electronic address: w.vanderzwaag@spinozacentre.nl.
J Neurosci Methods ; 384: 109746, 2023 01 15.
Article em En | MEDLINE | ID: mdl-36403778
BACKGROUND: Functional magnetic resonance imaging (fMRI), typically using blood oxygenation level-dependent (BOLD) contrast weighted imaging, allows the study of brain function with millimeter spatial resolution and temporal resolution of one to a few seconds. At a mesoscopic scale, neurons in the human brain are spatially organized in structures with dimensions of hundreds of micrometers, while they communicate at the millisecond timescale. For this reason, it is important to develop an fMRI method with simultaneous high spatial and temporal resolution. Line-scanning promises to reach this goal at the cost of volume coverage. NEW METHOD: Here, we release a comprehensive update to human line-scanning fMRI. First, we investigated multi-echo line-scanning with five different protocols varying the number of echoes and readout bandwidth while keeping the TR constant. In these, we compared different echo combination approaches in terms of BOLD activation (sensitivity) and temporal signal-to-noise ratio. Second, we implemented an adaptation of NOise reduction with DIstribution Corrected principal component analysis (NORDIC) thermal noise removal for line-scanning fMRI data. Finally, we tested three image-based navigators for motion correction and investigated different ways of performing fMRI analysis on the timecourses which were influenced by the insertion of the navigators themselves. RESULTS: The presented improvements are relatively straightforward to implement; multi-echo readout and NORDIC denoising together, significantly improve data quality in terms of tSNR and t-statistical values, while motion correction makes line-scanning fMRI more robust. COMPARISON WITH EXISTING METHODS: Multi-echo acquisitions and denoising have previously been applied in 3D magnetic resonance imaging. Their combination and application to 1D line-scanning is novel. The current proposed method greatly outperforms the previous line-scanning acquisitions with single-echo acquisition, in terms of tSNR (4.0 for single-echo line-scanning and 36.2 for NORDIC-denoised multi-echo) and t-statistical values (3.8 for single-echo line-scanning and 25.1 for NORDIC-denoised multi-echo line-scanning). CONCLUSIONS: Line-scanning fMRI was advanced compared to its previous implementation in order to improve sensitivity and reliability. The improved line-scanning acquisition could be used, in the future, for neuroscientific and clinical applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Imageamento por Ressonância Magnética Tipo de estudo: Guideline Limite: Humans Idioma: En Revista: J Neurosci Methods Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Imageamento por Ressonância Magnética Tipo de estudo: Guideline Limite: Humans Idioma: En Revista: J Neurosci Methods Ano de publicação: 2023 Tipo de documento: Article