Your browser doesn't support javascript.
loading
Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries.
Jung, Sung-Kyun; Gwon, Hyeokjo; Kim, Hyungsub; Yoon, Gabin; Shin, Dongki; Hong, Jihyun; Jung, Changhoon; Kim, Ju-Sik.
Afiliação
  • Jung SK; Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea. skjung@unist.ac.kr.
  • Gwon H; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea. skjung@unist.ac.kr.
  • Kim H; Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea. h.gwon@samsung.com.
  • Yoon G; Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon, 34057, Republic of Korea.
  • Shin D; Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
  • Hong J; Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
  • Jung C; Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
  • Kim JS; Analytical Engineering Group, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
Nat Commun ; 13(1): 7638, 2022 Dec 10.
Article em En | MEDLINE | ID: mdl-36496481
Garnet-type Li7La3Zr2O12 (LLZO) solid electrolytes (SE) demonstrates appealing ionic conductivity properties for all-solid-state lithium metal battery applications. However, LLZO (electro)chemical stability in contact with the lithium metal electrode is not satisfactory for developing practical batteries. To circumvent this issue, we report the preparation of various doped cubic-phase LLZO SEs without vacancy formation (i.e., Li = 7.0 such as Li7La3Zr0.5Hf0.5Sc0.5Nb0.5O12 and Li7La3Zr0.4Hf0.4Sn0.4Sc0.4Ta0.4O12). The entropy-driven synthetic approach allows access to hidden chemical space in cubic-phase garnet and enables lower solid-state synthesis temperature as the cubic-phase nucleation decreases from 750 to 400 °C. We demonstrate that the SEs with Li = 7.0 show better reduction stability against lithium metal compared to SE with low lithium contents and identical atomic species (i.e., Li = 6.6 such as Li6.6La3Zr0.4Hf0.4Sn0.4Sc0.2Ta0.6O12). Moreover, when a Li7La3Zr0.4Hf0.4Sn0.4Sc0.4Ta0.4O12 pellet is tested at 60 °C in coin cell configuration with a Li metal negative electrode, a LiNi1/3Co1/3Mn1/3O2-based positive electrode and an ionic liquid-based electrolyte at the cathode|SE interface, discharge capacity retention of about 92% is delivered after 700 cycles at 0.8 mA/cm2 and 60 °C.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fontes de Energia Elétrica / Lítio Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fontes de Energia Elétrica / Lítio Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article