Transcriptional signature in microglia isolated from an Alzheimer's disease mouse model treated with scanning ultrasound.
Bioeng Transl Med
; 8(1): e10329, 2023 Jan.
Article
em En
| MEDLINE
| ID: mdl-36684089
Transcranial scanning ultrasound combined with intravenously injected microbubbles (SUS+MB) has been shown to transiently open the blood-brain barrier and reduce the amyloid-ß (Aß) pathology in the APP23 mouse model of Alzheimer's disease (AD). This has been accomplished through the activation of microglial cells; however, their response to the SUS treatment is incompletely understood. Here, wild-type (WT) and APP23 mice were subjected to SUS+MB, using nonsonicated mice as sham controls. After 48 h, the APP23 mice were injected with methoxy-XO4 to label Aß aggregates, followed by microglial isolation into XO4+ and XO4- populations using flow cytometry. Both XO4+ and XO4- cells were subjected to RNA sequencing and transcriptome profiling. The analysis of the microglial cells revealed a clear segregation depending on genotype (AD model vs. WT mice) and Aß internalization (XO4+ vs. XO4- microglia), but interestingly, no differences were found between SUS+MB and sham in WT mice. Differential gene expression analysis in APP23 mice detected 278 genes that were significantly changed by SUS+MB in the XO4+ cells (248 up/30 down) and 242 in XO- cells (225 up/17 down). Pathway analysis highlighted differential expression of genes related to the phagosome pathway and marked upregulation of cell cycle-related transcripts in XO4+ and XO4- microglia isolated from SUS+MB-treated APP23 mice. Together, this highlights the complexity of the microglial response to transcranial ultrasound, with potential applications for the treatment of AD.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Bioeng Transl Med
Ano de publicação:
2023
Tipo de documento:
Article