Your browser doesn't support javascript.
loading
New proposal to address mediation analysis interrogations by using genetic variants as instrumental variables.
Coscia, Claudia; Molina-Montes, Esther; Benítez, Raquel; López de Maturana, Evangelina; Muriel, Alfonso; Malats, Núria; Pérez, Teresa.
Afiliação
  • Coscia C; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
  • Molina-Montes E; CIBERONC, Madrid, Spain.
  • Benítez R; Department of Statistics and Data Science, Universidad Complutense de Madrid, Madrid, Spain.
  • López de Maturana E; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
  • Muriel A; CIBERONC, Madrid, Spain.
  • Malats N; Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Granada, Granada, Spain.
  • Pérez T; Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
Genet Epidemiol ; 47(3): 287-300, 2023 04.
Article em En | MEDLINE | ID: mdl-36807329
The application of causal mediation analysis (CMA) considering the mediation effect of a third variable is increasing in epidemiological studies; however, this requires fitting strong assumptions on confounding bias. To address this limitation, we propose an extension of CMA combining it with Mendelian randomization (MRinCMA). We applied the new approach to analyse the causal effect of obesity and diabetes on pancreatic cancer, considering each factor as potential mediator. To check the performance of MRinCMA under several conditions/scenarios, we used it in different simulated data sets and compared it with structural equation models. For continuous variables, MRinCMA and structural equation models performed similarly, suggesting that both approaches are valid to obtain unbiased estimates. When noncontinuous variables were considered, MRinCMA presented, overall, lower bias than structural equation models. By applying MRinCMA, we did not find any evidence of causality of obesity or diabetes on pancreatic cancer. With this new methodology, researchers would be able to address CMA hypotheses by appropriately accounting for the confounding bias assumption regardless of the conditions used in their studies in different settings.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Análise de Mediação Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Humans Idioma: En Revista: Genet Epidemiol Assunto da revista: EPIDEMIOLOGIA / GENETICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Análise de Mediação Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Humans Idioma: En Revista: Genet Epidemiol Assunto da revista: EPIDEMIOLOGIA / GENETICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha