Your browser doesn't support javascript.
loading
Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae.
Jiang, Shiyang; Xue, Yinhao; Wang, Meng; Wang, Hao; Liu, Lu; Dai, Yanhui; Liu, Xia; Yue, Tongtao; Zhao, Jian.
Afiliação
  • Jiang S; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Xue Y; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Wang M; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Wang H; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Liu L; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Dai Y; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China. Electronic address: daiyanhui@ouc.edu.cn.
  • Liu X; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Yue T; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
  • Zhao J; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental
Sci Total Environ ; 874: 162533, 2023 May 20.
Article em En | MEDLINE | ID: mdl-36870492
Ocean acidification (OA) exhibits high threat to marine microalgae. However, the role of marine sediment in the OA-induced adverse effect towards microalgae is largely unknown. In this work, the effects of OA (pH 7.50) on the growth of individual and co-cultured microalgae (Emiliania huxleyi, Isochrysis galbana, Chlorella vulgaris, Phaeodactylum tricornutum, and Platymonas helgolandica tsingtaoensis) were systematically investigated in the sediment-seawater systems. OA inhibited E. huxleyi growth by 25.21 %, promoted P. helgolandica (tsingtaoensis) growth by 15.49 %, while did not cause any effect on the other three microalgal species in the absence of sediment. In the presence of the sediment, OA-induced growth inhibition of E. huxleyi was significantly mitigated, because the released chemicals (N, P and Fe) from seawater-sediment interface increased the photosynthesis and reduced oxidative stress. For P. tricornutum, C. vulgaris and P. helgolandica (tsingtaoensis), the growth was significantly increased in the presence of sediment in comparison with those under OA alone or normal seawater (pH 8.10). For I. galbana, the growth was inhibited when the sediment was introduced. Additionally, in the co-culturing system, C. vulgaris and P. tricornutum were the dominant species, while OA increased the proportions of dominant species and decreased the community stability as indicated by Shannon and Pielou's indexes. After the introduction of sediment, the community stability was recovered, but remained lower than that under normal condition. This work demonstrated the role of sediment in the biological responses to OA, and could be helpful for better understanding the impact of OA on marine ecosystems.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Chlorella vulgaris / Microalgas Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Chlorella vulgaris / Microalgas Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China