Your browser doesn't support javascript.
loading
The antitumor effects of WNT5A against hematological malignancies.
Bueno, Maura Lima Pereira; Saad, Sara Teresinha Olalla; Roversi, Fernanda Marconi.
Afiliação
  • Bueno MLP; Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil.
  • Saad STO; Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil.
  • Roversi FM; Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil. fermr@unicamp.br.
J Cell Commun Signal ; 17(4): 1487-1499, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37310653
ABSTRACT
The bone marrow (BM) microenvironment (niche) is abnormally altered in acute myeloid leukemia (AML), leading to deficient secretion of proteins, soluble factors, and cytokines by mesenchymal stromal cells (MSC) that modifies the crosstalk between MSC and hematopoietic cells. We focused on a WNT gene/protein family member, WNT5A, which is downregulated in leukemia and correlated with disease progression and poor prognosis. We demonstrated that WNT5A protein upregulated the WNT non-canonical pathway only in leukemic cells, without modulating normal cell behavior. We also introduced a novel WNT5A-mimicking compound, Foxy-5. Our results showed reduction of crucial biological functions that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy, as well as G0/G1 cell cycle arrest. Additionally, Foxy-5 induced early-stage macrophage cell differentiation, a crucial process during leukemia development. At a molecular level, Foxy-5 led to the downregulation of two overexpressed leukemia pathways, PI3K and MAPK, which resulted in a disarrangement of actin polymerization with consequent impairment of CXCL12-induced chemotaxis. Notably, in a novel tri-dimensional bone marrow-mimicking model, Foxy-5 led to reduced leukemia cell growth and similar results were observed in a xenograft in vivo model. Overall, our findings highlight the pivotal role of WNT5A in leukemia and demonstrate that Foxy-5 acts as a specific antineoplastic agent in leukemia, counterbalancing several leukemic oncogenic processes related to the crosstalk in the bone marrow niche, and represents a promising therapeutic option for AML. WNT5A, a WNT gene/protein family member, is naturally secreted by mesenchymal stromal cells and contributes to the maintenance of the bone marrow microenvironment. WNT5A downregulation is correlated with disease progression and poor prognosis. The treatment with Foxy-5, a WNT5A mimetizing compound, counterbalanced several leukemogenic processes that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy and disruption of PI3K and MAPK signaling pathways.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Cell Commun Signal Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Cell Commun Signal Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil