Your browser doesn't support javascript.
loading
A data-driven approach to complement the A/T/(N) classification system using CSF biomarkers.
Hernández-Lorenzo, Laura; Gil-Moreno, Maria José; Ortega-Madueño, Isabel; Cárdenas, Maria Cruz; Diez-Cirarda, Maria; Delgado-Álvarez, Alfonso; Palacios-Sarmiento, Marta; Matias-Guiu, Jorge; Corrochano, Silvia; Ayala, José L; Matias-Guiu, Jordi A.
Afiliação
  • Hernández-Lorenzo L; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Gil-Moreno MJ; Department of Computer Architecture and Automation, Computer Science Faculty, Complutense University of Madrid, Madrid, Spain.
  • Ortega-Madueño I; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Cárdenas MC; Department of Clinical Analysis, Institute of Laboratory Medicine, IdSSC, Hospital Clínico San Carlos, Madrid, Spain.
  • Diez-Cirarda M; Department of Clinical Analysis, Institute of Laboratory Medicine, IdSSC, Hospital Clínico San Carlos, Madrid, Spain.
  • Delgado-Álvarez A; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Palacios-Sarmiento M; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Matias-Guiu J; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Corrochano S; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Ayala JL; Department of Neurology, San Carlos Research Institute (IdSSC), Hospital Clínico San Carlos, Madrid, Spain.
  • Matias-Guiu JA; Department of Computer Architecture and Automation, Computer Science Faculty, Complutense University of Madrid, Madrid, Spain.
CNS Neurosci Ther ; 30(2): e14382, 2024 02.
Article em En | MEDLINE | ID: mdl-37501389
AIMS: The AT(N) classification system not only improved the biological characterization of Alzheimer's disease (AD) but also raised challenges for its clinical application. Unbiased, data-driven techniques such as clustering may help optimize it, rendering informative categories on biomarkers' values. METHODS: We compared the diagnostic and prognostic abilities of CSF biomarkers clustering results against their AT(N) classification. We studied clinical (patients from our center) and research (Alzheimer's Disease Neuroimaging Initiative) cohorts. The studied CSF biomarkers included Aß(1-42), Aß(1-42)/Aß(1-40) ratio, tTau, and pTau. RESULTS: The optimal solution yielded three clusters in both cohorts, significantly different in diagnosis, AT(N) classification, values distribution, and survival. We defined these three CSF groups as (i) non-defined or unrelated to AD, (ii) early stages and/or more delayed risk of conversion to dementia, and (iii) more severe cognitive impairment subjects with faster progression to dementia. CONCLUSION: We propose this data-driven three-group classification as a meaningful and straightforward approach to evaluating the risk of conversion to dementia, complementary to the AT(N) system classification.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Screening_studies Limite: Humans Idioma: En Revista: CNS Neurosci Ther Assunto da revista: NEUROLOGIA / TERAPEUTICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Screening_studies Limite: Humans Idioma: En Revista: CNS Neurosci Ther Assunto da revista: NEUROLOGIA / TERAPEUTICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha