Your browser doesn't support javascript.
loading
Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification.
Pfeifer, Bastian; Chereda, Hryhorii; Martin, Roman; Saranti, Anna; Clemens, Sandra; Hauschild, Anne-Christin; Beißbarth, Tim; Holzinger, Andreas; Heider, Dominik.
Afiliação
  • Pfeifer B; Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz 8036, Austria.
  • Chereda H; Medical Bioinformatics, University Medical Center Göttingen, Göttingen 37077, Germany.
  • Martin R; Data Science in Biomedicine, Department of Mathematics and Computer Science, University of Marburg, Marburg 35043, Germany.
  • Saranti A; Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz 8036, Austria.
  • Clemens S; Human-Centered AI Lab, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
  • Hauschild AC; Data Science in Biomedicine, Department of Mathematics and Computer Science, University of Marburg, Marburg 35043, Germany.
  • Beißbarth T; Institute for Medical Informatics, University Medical Center Göttingen, Göttingen 37075, Germany.
  • Holzinger A; Medical Bioinformatics, University Medical Center Göttingen, Göttingen 37077, Germany.
  • Heider D; Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz 8036, Austria.
Bioinformatics ; 39(11)2023 11 01.
Article em En | MEDLINE | ID: mdl-37988152
SUMMARY: Federated learning enables collaboration in medicine, where data is scattered across multiple centers without the need to aggregate the data in a central cloud. While, in general, machine learning models can be applied to a wide range of data types, graph neural networks (GNNs) are particularly developed for graphs, which are very common in the biomedical domain. For instance, a patient can be represented by a protein-protein interaction (PPI) network where the nodes contain the patient-specific omics features. Here, we present our Ensemble-GNN software package, which can be used to deploy federated, ensemble-based GNNs in Python. Ensemble-GNN allows to quickly build predictive models utilizing PPI networks consisting of various node features such as gene expression and/or DNA methylation. We exemplary show the results from a public dataset of 981 patients and 8469 genes from the Cancer Genome Atlas (TCGA). AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/pievos101/Ensemble-GNN, and the data at Zenodo (DOI: 10.5281/zenodo.8305122).
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Metilação de DNA / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Metilação de DNA / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Áustria