Automatic surgical phase recognition-based skill assessment in laparoscopic distal gastrectomy using multicenter videos.
Gastric Cancer
; 27(1): 187-196, 2024 Jan.
Article
em En
| MEDLINE
| ID: mdl-38038811
BACKGROUND: Gastric surgery involves numerous surgical phases; however, its steps can be clearly defined. Deep learning-based surgical phase recognition can promote stylization of gastric surgery with applications in automatic surgical skill assessment. This study aimed to develop a deep learning-based surgical phase-recognition model using multicenter videos of laparoscopic distal gastrectomy, and examine the feasibility of automatic surgical skill assessment using the developed model. METHODS: Surgical videos from 20 hospitals were used. Laparoscopic distal gastrectomy was defined and annotated into nine phases and a deep learning-based image classification model was developed for phase recognition. We examined whether the developed model's output, including the number of frames in each phase and the adequacy of the surgical field development during the phase of supra-pancreatic lymphadenectomy, correlated with the manually assigned skill assessment score. RESULTS: The overall accuracy of phase recognition was 88.8%. Regarding surgical skill assessment based on the number of frames during the phases of lymphadenectomy of the left greater curvature and reconstruction, the number of frames in the high-score group were significantly less than those in the low-score group (829 vs. 1,152, P < 0.01; 1,208 vs. 1,586, P = 0.01, respectively). The output score of the adequacy of the surgical field development, which is the developed model's output, was significantly higher in the high-score group than that in the low-score group (0.975 vs. 0.970, P = 0.04). CONCLUSION: The developed model had high accuracy in phase-recognition tasks and has the potential for application in automatic surgical skill assessment systems.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Gástricas
/
Laparoscopia
Limite:
Humans
Idioma:
En
Revista:
Gastric Cancer
Assunto da revista:
GASTROENTEROLOGIA
/
NEOPLASIAS
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Japão