Your browser doesn't support javascript.
loading
Nanocluster Surface Microenvironment Modulates Electrocatalytic CO2 Reduction.
Yoo, Seungwoo; Yoo, Suhwan; Deng, Guocheng; Sun, Fang; Lee, Kangjae; Jang, Hyunsung; Lee, Chan Woo; Liu, Xiaolin; Jang, Junghwan; Tang, Qing; Hwang, Yun Jeong; Hyeon, Taeghwan; Bootharaju, Megalamane Siddaramappa.
Afiliação
  • Yoo S; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
  • Yoo S; School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
  • Deng G; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
  • Sun F; Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
  • Lee K; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
  • Jang H; School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
  • Lee CW; School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China.
  • Liu X; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
  • Jang J; School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
  • Tang Q; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
  • Hwang YJ; Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
  • Hyeon T; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
  • Bootharaju MS; School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
Adv Mater ; 36(13): e2313032, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38113897
ABSTRACT
The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2RR activity (CO Faradaic efficiency, FECO 90.3%) with higher CO partial current density (jCO) in an H-cell compared to Ag25 cluster (FECO 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2. Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article