Your browser doesn't support javascript.
loading
AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network.
Su, Yansen; Hu, Zhiyang; Wang, Fei; Bin, Yannan; Zheng, Chunhou; Li, Haitao; Chen, Haowen; Zeng, Xiangxiang.
Afiliação
  • Su Y; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
  • Hu Z; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
  • Wang F; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
  • Bin Y; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
  • Zheng C; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
  • Li H; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
  • Chen H; College of Computer Science and Electronic Engineering, Hunan University, Hunan, 410082, China.
  • Zeng X; College of Computer Science and Electronic Engineering, Hunan University, Hunan, 410082, China.
Brief Bioinform ; 25(1)2023 11 22.
Article em En | MEDLINE | ID: mdl-38145949
ABSTRACT
Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted to network representation learning to learn rich information from heterogeneous data. Although network representation learning algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex semantic information. To address the problem, we introduce an adaptive meta-graph-based method, termed AMGDTI, for DTI prediction. In the proposed AMGDTI, the semantic information is automatically aggregated from a heterogeneous network by training an adaptive meta-graph, thereby achieving efficient information integration without requiring domain knowledge. The effectiveness of the proposed AMGDTI is verified on two benchmark datasets. Experimental results demonstrate that the AMGDTI method overall outperforms eight state-of-the-art methods in predicting DTI and achieves the accurate identification of novel DTIs. It is also verified that the adaptive meta-graph exhibits flexibility and effectively captures complex fine-grained semantic information, enabling the learning of intricate heterogeneous network topology and the inference of potential drug-target relationship.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Medicina Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Medicina Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China