Nuclear-Targeting Lipid PtIV Prodrug Amphiphile Cooperates with siRNA for Enhanced Cancer Immunochemotherapy by Amplifying Pt-DNA Adducts and Reducing Phosphatidylserine Exposure.
J Am Chem Soc
; 146(1): 1185-1195, 2024 01 10.
Article
em En
| MEDLINE
| ID: mdl-38148611
ABSTRACT
Patients treated with Pt-based anticancer drugs (PtII) often experience severe side effects and are susceptible to cancer recurrence due to the limited bioavailability of PtII and tumor-induced immunosuppression. The exposure of phosphatidylserine on the cell's outer surface induced by PtII results in profound immunosuppression through the binding of phosphatidylserine to its receptors on immune cells. Here, we report a novel approach for enhanced cancer chemoimmunotherapy, where a novel nuclear-targeting lipid PtIV prodrug amphiphile was used to deliver a small interfering RNA (siXkr8) to simultaneously amplify Pt-DNA adducts and reduce the level of exposure of phosphatidylserine. This drug delivery vehicle is engineered by integrating the PtIV prodrug with self-assembly performance and siXkr8 into a lipid nanoparticle, which shows tumor accumulation, cancer cell nucleus targeting, and activatable in a reduced microenvironment. It is demonstrated that nuclear-targeting lipid PtIV prodrug increases the DNA cross-linking, resulting in increased Pt-DNA adduct formation. The synergistic effects of the PtIV prodrug and siXkr8 contribute to the improvement of the tumor immune microenvironment. Consequently, the increased Pt-DNA adducts and immunogenicity effectively inhibit primary tumor growth and prevent tumor recurrence. These results underscore the potential of utilizing the nuclear-targeting lipid PtIV prodrug amphiphile to enhance Pt-DNA adduct formation and employing siXkr8 to alleviate immunosuppression during chemotherapy.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Pró-Fármacos
/
Neoplasias
/
Antineoplásicos
Limite:
Humans
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China