Your browser doesn't support javascript.
loading
Life Cycle Greenhouse Gas Emissions of CO2-Enabled Sedimentary Basin Geothermal.
Liu, Lily; Miranda, Marcos M; Bielicki, Jeffrey M; Ellis, Brian R; Johnson, Jeremiah X.
Afiliação
  • Liu L; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695-7908, United States.
  • Miranda MM; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
  • Bielicki JM; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
  • Ellis BR; John Glenn College of Public Affairs, The Ohio State University, Columbus, Ohio 43210, United States.
  • Johnson JX; Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Environ Sci Technol ; 58(4): 1882-1893, 2024 Jan 30.
Article em En | MEDLINE | ID: mdl-38214663
ABSTRACT
The expansion of renewable energy and the large-scale deployment of carbon dioxide (CO2) capture and storage (CCS) can decarbonize the power sector. The use of CO2 to extract geothermal heat from naturally porous and permeable sedimentary basins to generate electricity (CO2-plume geothermal (CPG) system) presents an opportunity to simultaneously generate renewable energy and geologically store CO2. In this study, we estimate the life cycle greenhouse gas (GHG) impacts of CPG systems through 12 scenarios in which CPG systems are combined with one of six CO2 sources (e.g., bioenergy with carbon capture and storage (BECCS) and iron and steel facilities) and operate in two geological settings. We find the life cycle GHG emissions of CPG systems ranging from -0.25 to -6.18 kg CO2eq/kWh. CPG systems can achieve the highest emissions reductions when utilizing the CO2 captured from BECCS. We evaluate uncertainty through a Monte Carlo simulation, demonstrating consistent net reductions in life cycle emissions and a local, one-parameter-at-a-time sensitivity analysis that identifies the CO2 capture capacity as the high-impact parameter of the results. Through the production of electricity, CPG systems can provide additional environmental benefits to the deployment of large-scale CCS.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gases de Efeito Estufa Idioma: En Revista: Environ Sci Technol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gases de Efeito Estufa Idioma: En Revista: Environ Sci Technol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos