Your browser doesn't support javascript.
loading
Predictive models for health outcomes due to SARS-CoV-2, including the effect of vaccination: a systematic review.
Espinosa, Oscar; Mora, Laura; Sanabria, Cristian; Ramos, Antonio; Rincón, Duván; Bejarano, Valeria; Rodríguez, Jhonathan; Barrera, Nicolás; Álvarez-Moreno, Carlos; Cortés, Jorge; Saavedra, Carlos; Robayo, Adriana; Franco, Oscar H.
Afiliação
  • Espinosa O; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia. oaespinosaa@
  • Mora L; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia.
  • Sanabria C; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia.
  • Ramos A; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Rincón D; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia.
  • Bejarano V; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Rodríguez J; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Barrera N; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia.
  • Álvarez-Moreno C; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Cortés J; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Saavedra C; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Robayo A; Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia.
  • Franco OH; University Medical Center Utrecht, Utrecht University & Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA.
Syst Rev ; 13(1): 30, 2024 01 16.
Article em En | MEDLINE | ID: mdl-38229123
ABSTRACT

BACKGROUND:

The interaction between modelers and policymakers is becoming more common due to the increase in computing speed seen in recent decades. The recent pandemic caused by the SARS-CoV-2 virus was no exception. Thus, this study aims to identify and assess epidemiological mathematical models of SARS-CoV-2 applied to real-world data, including immunization for coronavirus 2019 (COVID-19).

METHODOLOGY:

PubMed, JSTOR, medRxiv, LILACS, EconLit, and other databases were searched for studies employing epidemiological mathematical models of SARS-CoV-2 applied to real-world data. We summarized the information qualitatively, and each article included was assessed for bias risk using the Joanna Briggs Institute (JBI) and PROBAST checklist tool. The PROSPERO registration number is CRD42022344542.

FINDINGS:

In total, 5646 articles were retrieved, of which 411 were included. Most of the information was published in 2021. The countries with the highest number of studies were the United States, Canada, China, and the United Kingdom; no studies were found in low-income countries. The SEIR model (susceptible, exposed, infectious, and recovered) was the most frequently used approach, followed by agent-based modeling. Moreover, the most commonly used software were R, Matlab, and Python, with the most recurring health outcomes being death and recovery. According to the JBI assessment, 61.4% of articles were considered to have a low risk of bias.

INTERPRETATION:

The utilization of mathematical models increased following the onset of the SARS-CoV-2 pandemic. Stakeholders have begun to incorporate these analytical tools more extensively into public policy, enabling the construction of various scenarios for public health. This contribution adds value to informed decision-making. Therefore, understanding their advancements, strengths, and limitations is essential.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: SARS-CoV-2 / COVID-19 Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Syst Rev Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Colômbia

Texto completo: 1 Base de dados: MEDLINE Assunto principal: SARS-CoV-2 / COVID-19 Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Syst Rev Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Colômbia