Your browser doesn't support javascript.
loading
Surface Plasmon Resonance as a Tool to Elucidate the Molecular Determinants of Key Transcriptional Regulators Controlling Rhizobial Lifestyles.
Tomás-Gallardo, Laura; Cabrera, Juan J; Mesa, Socorro.
Afiliação
  • Tomás-Gallardo L; Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Junta de Andalucía-Pablo de Olavide University, Seville, Spain. ltomgal@upo.es.
  • Cabrera JJ; Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.
  • Mesa S; Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.
Methods Mol Biol ; 2751: 145-163, 2024.
Article em En | MEDLINE | ID: mdl-38265715
ABSTRACT
Bacteria must be provided with a battery of tools integrated into regulatory networks, in order to respond and, consequently, adapt their physiology to changing environments. Within these networks, transcription factors finely orchestrate the expression of genes in response to a variety of signals, by recognizing specific DNA sequences at their promoter regions. Rhizobia are host-interacting soil bacteria that face severe changes to adapt their physiology from free-living conditions to the nitrogen-fixing endosymbiotic state inside root nodules associated with leguminous plants. One of these cues is the low partial pressure of oxygen within root nodules.Surface plasmon resonance (SPR) constitutes a technique that allows to measure molecular interactions dynamics at real time by detecting changes in the refractive index of a surface. Here, we implemented the SPR methodology to analyze the discriminatory determinants of transcription factors for specific interaction with their target genes. We focused on FixK2, a CRP/FNR-type protein with a central role in the complex oxygen-responsive regulatory network in the soybean endosymbiont Bradyrhizobium diazoefficiens. Our study unveiled relevant residues for protein-DNA interaction as well as allowed us to monitor kinetics and stability protein-DNA complex. We believe that this approach can be employed for the characterization of other relevant transcription factors which can assist to the better understanding of the adaptation of bacteria with agronomic or human interest to their different modes of life.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rhizobium Limite: Humans Idioma: En Revista: Methods Mol Biol / Methods in molecular biology / Methods mol. biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rhizobium Limite: Humans Idioma: En Revista: Methods Mol Biol / Methods in molecular biology / Methods mol. biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha