Your browser doesn't support javascript.
loading
γ-Ray Irradiation Significantly Enhances Capacitive Energy Storage Performance of Polymer Dielectric Films.
Wang, Yiwei; Bao, Zhiwei; Ding, Song; Jia, Jiangheng; Dai, Zhizhan; Li, Yaoxin; Shen, Shengchun; Chu, Songchao; Yin, Yuewei; Li, Xiaoguang.
Afiliação
  • Wang Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Bao Z; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Ding S; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Jia J; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Dai Z; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Li Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Shen S; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Chu S; Anhui Tongfeng Electronics Co., Ltd., Tongling, 244000, P. R. China.
  • Yin Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Li X; Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
Adv Mater ; 36(16): e2308597, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38288654
ABSTRACT
Polymer dielectric capacitors are fundamental in advanced electronics and power grids but suffer from low energy density, hindering miniaturization of compact electrical systems. It is shown that high-energy and strong penetrating γ-irradiation significantly enhances capacitive energy storage performance of polymer dielectrics. γ-irradiated biaxially oriented polypropylene (BOPP) films exhibit an extraordinarily high energy density of 10.4 J cm-3 at 968 MV m-1 with an efficiency of 97.3%. In particular, an energy density of 4.06 J cm-3 with an ultrahigh efficiency of 98% is reliably maintained through 20 000 charge-discharge cycles under 600 MV m-1. At 125 °C, the γ-irradiated BOPP film still delivers a high discharged energy density of 5.88 J cm-3 with an efficiency of 90% at 770 MV m-1. Substantial improvements are also achieved for γ-irradiated cycloolefin copolymers at a high temperature of 150 °C, verifying the strategy generalizability. Experimental and theoretical analyses reveal that the excellent performance should be related to the γ-irradiation induced polar functional groups with high electron affinity in the molecular chain, which offer deep energy traps to impede charge transport. This work provides a simple and generally applicable strategy for developing high-performance polymer dielectrics.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article