γ-Ray Irradiation Significantly Enhances Capacitive Energy Storage Performance of Polymer Dielectric Films.
Adv Mater
; 36(16): e2308597, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38288654
ABSTRACT
Polymer dielectric capacitors are fundamental in advanced electronics and power grids but suffer from low energy density, hindering miniaturization of compact electrical systems. It is shown that high-energy and strong penetrating γ-irradiation significantly enhances capacitive energy storage performance of polymer dielectrics. γ-irradiated biaxially oriented polypropylene (BOPP) films exhibit an extraordinarily high energy density of 10.4 J cm-3 at 968 MV m-1 with an efficiency of 97.3%. In particular, an energy density of 4.06 J cm-3 with an ultrahigh efficiency of 98% is reliably maintained through 20 000 charge-discharge cycles under 600 MV m-1. At 125 °C, the γ-irradiated BOPP film still delivers a high discharged energy density of 5.88 J cm-3 with an efficiency of 90% at 770 MV m-1. Substantial improvements are also achieved for γ-irradiated cycloolefin copolymers at a high temperature of 150 °C, verifying the strategy generalizability. Experimental and theoretical analyses reveal that the excellent performance should be related to the γ-irradiation induced polar functional groups with high electron affinity in the molecular chain, which offer deep energy traps to impede charge transport. This work provides a simple and generally applicable strategy for developing high-performance polymer dielectrics.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2024
Tipo de documento:
Article