Your browser doesn't support javascript.
loading
Asymmetric evolution of ISG15 homologs and the immune adaptation to LBUSV infection in spotted seabass (Lateolabrax maculatus).
Zhang, Bo; Yan, Lulu; Lin, Changhong; Liu, Yong; Zhao, Chao; Wang, Pengfei; Zhang, Bo; Zhang, Yanhong; Qiu, Lihua.
Afiliação
  • Zhang B; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries R
  • Yan L; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries R
  • Lin C; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Aqua-life Scien
  • Liu Y; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
  • Zhao C; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries R
  • Wang P; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries R
  • Zhang B; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries R
  • Zhang Y; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, China.
  • Qiu L; Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries R
Fish Shellfish Immunol ; 148: 109441, 2024 May.
Article em En | MEDLINE | ID: mdl-38354965
ABSTRACT
The battle between host and viral is ubiquitous across all ecosystems. Despite this, research is scarce on the antiviral characteristics of fish, particularly in those that primarily rely on innate immune responses. This study, comprehensively explored the genetic and antiviral features of ISG15 in spotted seabass, focusing on its response to largemouth bass ulcerative syndrome virus (LBUSV). Through whole-genome BLAST and PCR cloning, two ISG15 homologs, namely LmISG15a and LmISG15b, were identified in spotted seabass, both encoding highly conserved proteins. However, a distinctive contrast emerged in their expression patterns, with LmISG15a exhibiting high expression in immune organs while LmISG15b remained largely silent across various organs. Regulatory elements analysis indicated an asymmetric evolution of the two ISG15s, with the minimal expression of LmISG15b may attribute to the loss of a necessary ISRE and an additional instability "ATTTA" motif. Association analysis demonstrated a significant correlation between LmISG15a expression and LBUSV infection. Subsequent antiviral activity detection revealed that LmISG15a interacted with LBUSV, inhibiting its replication by activating ISGylation and downstream pro-inflammatory mediators. In summary, this study unveils a distinct evolutionary strategy of fish antiviral gene ISG15 and delineates its kinetic characteristics in response to LBUSV infection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bass / Viroses / Doenças dos Peixes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Fish Shellfish Immunol Assunto da revista: BIOLOGIA / MEDICINA VETERINARIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bass / Viroses / Doenças dos Peixes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Fish Shellfish Immunol Assunto da revista: BIOLOGIA / MEDICINA VETERINARIA Ano de publicação: 2024 Tipo de documento: Article