Your browser doesn't support javascript.
loading
SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks.
Mañanes, Diego; Rivero-García, Inés; Relaño, Carlos; Torres, Miguel; Sancho, David; Jimenez-Carretero, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima.
Afiliação
  • Mañanes D; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  • Rivero-García I; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  • Relaño C; Departamento de Ingeniería Biomédica, ETSI de Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
  • Torres M; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  • Sancho D; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  • Jimenez-Carretero D; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  • Torroja C; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
  • Sánchez-Cabo F; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
Bioinformatics ; 40(2)2024 02 01.
Article em En | MEDLINE | ID: mdl-38366652
ABSTRACT

SUMMARY:

Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available platforms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages single-cell RNA sequencing data to simulate mixed transcriptional profiles with predefined cellular composition, which are subsequently used to train a fully connected neural network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and fast alternative to the available state-of-the art tools. AVAILABILITY AND IMPLEMENTATION The R package SpatialDDLS is available via CRAN-The Comprehensive R Archive Network https//CRAN.R-project.org/package=SpatialDDLS. A detailed manual of the main functionalities implemented in the package can be found at https//diegommcc.github.io/SpatialDDLS.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Software Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Software Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha