Your browser doesn't support javascript.
loading
Self-propelled enzyme-controlled IR-mesoporous silica Janus nanomotor for smart delivery.
Mayol, Beatriz; Pradana-López, Sandra; García, Alba; de la Torre, Cristina; Díez, Paula; Villalonga, Anabel; Anillo, Carlos; Vilela, Diana; Sánchez, Alfredo; Martínez-Ruiz, Paloma; Martínez-Máñez, Ramón; Villalonga, Reynaldo.
Afiliação
  • Mayol B; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • Pradana-López S; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • García A; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Uni
  • de la Torre C; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Uni
  • Díez P; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de
  • Villalonga A; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • Anillo C; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • Vilela D; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • Sánchez A; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • Martínez-Ruiz P; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
  • Martínez-Máñez R; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Uni
  • Villalonga R; Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain. Electronic address: rvillalonga@quim.ucm.es.
J Colloid Interface Sci ; 671: 294-302, 2024 Oct.
Article em En | MEDLINE | ID: mdl-38815366
ABSTRACT
Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme. Addition of glucose leads to the enzymatic production of H2O2 and gluconic acid, being the first compound catalytically decomposed at the Ir nanoparticle face producing O2 and causing the nanomachine propulsion. Gluconic acid leads to a pH reduction at the nanomachine microenvironment causing the disruption of the gating mechanism with the subsequent cargo release. This work demonstrates that enzyme-mediated self-propulsion improved release efficiency being this nanomotor successfully employed for the smart release of Doxorubicin in HeLa cancer cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doxorrubicina / Dióxido de Silício / Enzimas Imobilizadas / Nanopartículas / Glucose Oxidase Limite: Humans Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doxorrubicina / Dióxido de Silício / Enzimas Imobilizadas / Nanopartículas / Glucose Oxidase Limite: Humans Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha