Preoperative prediction of histopathological grading in patients with chondrosarcoma using MRI-based radiomics with semantic features.
BMC Med Imaging
; 24(1): 171, 2024 Jul 11.
Article
em En
| MEDLINE
| ID: mdl-38992609
ABSTRACT
BACKGROUND:
Distinguishing high-grade from low-grade chondrosarcoma is extremely vital not only for guiding the development of personalized surgical treatment but also for predicting the prognosis of patients. We aimed to establish and validate a magnetic resonance imaging (MRI)-based nomogram for predicting preoperative grading in patients with chondrosarcoma.METHODS:
Approximately 114 patients (60 and 54 cases with high-grade and low-grade chondrosarcoma, respectively) were recruited for this retrospective study. All patients were treated via surgery and histopathologically proven, and they were randomly divided into training (n = 80) and validation (n = 34) sets at a ratio of 73. Next, radiomics features were extracted from two sequences using the least absolute shrinkage and selection operator (LASSO) algorithms. The rad-scores were calculated and then subjected to logistic regression to develop a radiomics model. A nomogram combining independent predictive semantic features with radiomic by using multivariate logistic regression was established. The performance of each model was assessed by the receiver operating characteristic (ROC) curve analysis and the area under the curve, while clinical efficacy was evaluated via decision curve analysis (DCA).RESULTS:
Ultimately, six optimal radiomics signatures were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging with fat suppression (T2WI-FS) sequences to develop the radiomics model. Tumour cartilage abundance, which emerged as an independent predictor, was significantly related to chondrosarcoma grading (p < 0.05). The AUC values of the radiomics model were 0.85 (95% CI, 0.76 to 0.95) in the training sets, and the corresponding AUC values in the validation sets were 0.82 (95% CI, 0.65 to 0.98), which were far superior to the clinical model AUC values of 0.68 (95% CI, 0.58 to 0.79) in the training sets and 0.72 (95% CI, 0.57 to 0.87) in the validation sets. The nomogram demonstrated good performance in the preoperative distinction of chondrosarcoma. The DCA analysis revealed that the nomogram model had a markedly higher clinical usefulness in predicting chondrosarcoma grading preoperatively than either the rad-score or clinical model alone.CONCLUSION:
The nomogram based on MRI radiomics combined with optimal independent factors had better performance for the preoperative differentiation between low-grade and high-grade chondrosarcoma and has potential as a noninvasive preoperative tool for personalizing clinical plans.Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Ósseas
/
Imageamento por Ressonância Magnética
/
Condrossarcoma
/
Nomogramas
/
Gradação de Tumores
Limite:
Adult
/
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
BMC Med Imaging
Assunto da revista:
DIAGNOSTICO POR IMAGEM
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China