Your browser doesn't support javascript.
loading
Magnetic-field-driven targeting of exosomes modulates immune and metabolic changes in dystrophic muscle.
Villa, Chiara; Secchi, Valeria; Macchi, Mirco; Tripodi, Luana; Trombetta, Elena; Zambroni, Desiree; Padelli, Francesco; Mauri, Michele; Molinaro, Monica; Oddone, Rebecca; Farini, Andrea; De Palma, Antonella; Varela Pinzon, Laura; Santarelli, Federica; Simonutti, Roberto; Mauri, PierLuigi; Porretti, Laura; Campione, Marcello; Aquino, Domenico; Monguzzi, Angelo; Torrente, Yvan.
Afiliação
  • Villa C; Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
  • Secchi V; Department of Materials Science, University of Milano Bicocca, Milan, Italy.
  • Macchi M; NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy.
  • Tripodi L; Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
  • Trombetta E; Luxembourg Centre for Systems Biomedicine, Department of Biomedical Data Science, Luxembourg City, Luxembourg.
  • Zambroni D; Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
  • Padelli F; Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Mauri M; Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC, San Raffaele Scientific Institute - OSR, Milan, Italy.
  • Molinaro M; Department of Neuroradiology, IRCCS Foundation Neurological Institute 'Carlo Besta', Milan, Italy.
  • Oddone R; Department of Materials Science, University of Milano Bicocca, Milan, Italy.
  • Farini A; NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy.
  • De Palma A; Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
  • Varela Pinzon L; Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
  • Santarelli F; Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  • Simonutti R; National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy.
  • Mauri P; Clinical Proteomics Laboratory, ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy.
  • Porretti L; Veterinary Medicine, Department Clinical Sciences, Equine Sciences, Equine Musculoskeletal Biology. Utrecht University, Utrecht, Netherlands.
  • Campione M; Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
  • Aquino D; Department of Materials Science, University of Milano Bicocca, Milan, Italy.
  • Monguzzi A; NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy.
  • Torrente Y; National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy.
Nat Nanotechnol ; 2024 Jul 22.
Article em En | MEDLINE | ID: mdl-39039121
ABSTRACT
Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nat Nanotechnol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nat Nanotechnol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália