Your browser doesn't support javascript.
loading
Improving the interfacial stability of ultrahigh-nickel cathodes with PEO-based electrolytes by targeted chemical reactions.
Dai, Yuqing; Hou, Zihan; Luo, Gui; Deng, Duo; Peng, Wenjie; Wang, Zhixing; Guo, Huajun; Li, Xinhai; Yan, Guochun; Duan, Hui; Zhang, Wenchao; Wang, Jiexi.
Afiliação
  • Dai Y; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University Changsha 410083 China wangjiexikeen@csu.edu.cn.
  • Hou Z; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University Changsha 410083 China wangjiexikeen@csu.edu.cn.
  • Luo G; BASF ShanShan Battery Material Co., Ltd Changsha 410205 China.
  • Deng D; BASF ShanShan Battery Material Co., Ltd Changsha 410205 China.
  • Peng W; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University Changsha 410083 China wangjiexikeen@csu.edu.cn.
  • Wang Z; BASF ShanShan Battery Material Co., Ltd Changsha 410205 China.
  • Guo H; National Engineering Research Centre of Advanced Energy Storage Materials Changsha 410205 China.
  • Li X; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University Changsha 410083 China wangjiexikeen@csu.edu.cn.
  • Yan G; National Engineering Research Centre of Advanced Energy Storage Materials Changsha 410205 China.
  • Duan H; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University Changsha 410083 China wangjiexikeen@csu.edu.cn.
  • Zhang W; National Engineering Research Centre of Advanced Energy Storage Materials Changsha 410205 China.
  • Wang J; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University Changsha 410083 China wangjiexikeen@csu.edu.cn.
Chem Sci ; 15(32): 12964-12972, 2024 Aug 14.
Article em En | MEDLINE | ID: mdl-39148778
ABSTRACT
Benefiting from high energy density of ultrahigh-nickel cathode materials and good safety of PEO-based electrolytes, PEO-based ultrahigh-nickel solid-state lithium batteries (SLMBs) are considered to be new-generation energy storage devices. However, the incompatibility of ultrahigh-nickel cathode materials and PEO-based electrolytes is the main challenge due to serious interfacial side reactions. Therefore, the modification of the cathode/electrolyte interface is crucial. Herein, the residual lithium on the surface of LiNi0.9Co0.06Mn0.04O2 is utilized to construct an interfacial coating layer by reacting with H3BO3. The in situ formed xLi2O-B2O3 coating layer (LBO1-NCM) with high ionic conductivity can be regulated with different crystal structures during the sintering process. Besides, an all-solid-state three-electrode cell is fabricated, which verifies that the xLi2O-B2O3 coating can effectively stabilize the interface. Astonishingly, uneven Li anode deposition is observed in SLMBs, which is caused by the breakage of PEO molecular chains due to the strong oxidation of the cathode, while this crosstalk is also suppressed by the xLi2O-B2O3 coating layer. Consequently, Li|PEO|LBO1-NCM achieves a substantially improved electrochemical performance, exhibiting 90.5% of capacity retention after 100 cycles for the coin cell and 80.3% of capacity retention after 200 cycles for the pouch cell. Apparently, the targeted modification of interfaces should be paid as much attention as electrolyte optimization in SLMBs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2024 Tipo de documento: Article