Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(9): 14168-14177, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36043881

RESUMO

Reconfigurable magnetization textures offer control of spin waves with promising properties for future low-power beyond-CMOS systems. However, materials with perpendicular magnetic anisotropy (PMA) suitable for stable magnetization-texture formation are characterized by high damping, which limits their applicability in magnonic devices. Here, we propose to overcome this limitation by using hybrid structures, i.e., a PMA layer magnetostatically coupled to a low-damping soft ferromagnetic film. We experimentally show that a periodic stripe-domain texture from a PMA layer is imprinted upon the soft layer and induces a nonreciprocal dispersion relation of the spin waves confined to the low-damping film. Moreover, an asymmetric bandgap features the spin-wave band diagram, which is a clear demonstration of collective spin-wave dynamics, a property characteristic for magnonic crystals with broken time-reversal symmetry. The composite character of the hybrid structure allows for stabilization of two magnetic states at remanence, with parallel and antiparallel orientation of net magnetization in hard and soft layers. The states can be switched using a low external magnetic field; therefore, the proposed system obtains an additional functionality of state reconfigurability. This study offers a link between reconfigurable magnetization textures and low-damping spin-wave dynamics, providing an opportunity to create miniaturized, programmable, and energy-efficient signal processing devices operating at high frequencies.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430225

RESUMO

Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)-light coupled to lattice vibrations- with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices.

3.
J Synchrotron Radiat ; 25(Pt 4): 1144-1152, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979176

RESUMO

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA