RESUMO
Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by ≈30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by ≈10% and 20%, respectively, with a ≈25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy.
Assuntos
Hidrogéis , Infarto do Miocárdio , Oxigênio , Seda , Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/tratamento farmacológico , Seda/química , Hidrogéis/química , Oxigênio/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Injeções , Cardiotônicos/farmacologia , Cardiotônicos/administração & dosagem , Cardiotônicos/química , Quimiocina CXCL12/administração & dosagem , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , RatosRESUMO
Noninvasive monitoring of biofabricated tissues during the biomanufacturing process is needed to obtain reproducible, healthy, and functional tissues. Measuring the levels of biomarkers secreted from tissues is a promising strategy to understand the status of tissues during biofabrication. Continuous and real-time information from cultivated tissues enables users to achieve scalable manufacturing. Label-free biosensors are promising candidates for detecting cell secretomes since they can be noninvasive and do not require labor-intensive processes such as cell lysing. Moreover, most conventional monitoring techniques are single-use, conducted at the end of the fabrication process, and, challengingly, are not permissive to in-line and continual detection. To address these challenges, we developed a noninvasive and continual monitoring platform to evaluate the status of cells during the biofabrication process, with a particular focus on monitoring the transient processes that stem cells go through during in vitro differentiation over extended periods. We designed and evaluated a reusable electrochemical immunosensor with the capacity for detecting trace amounts of secreted osteogenic markers, such as osteopontin (OPN). The sensor has a low limit of detection (LOD), high sensitivity, and outstanding selectivity in complex biological media. We used this OPN immunosensor to continuously monitor on-chip osteogenesis of human mesenchymal stem cells (hMSCs) cultured 2D and 3D hydrogel constructs inside a microfluidic bioreactor for more than a month and were able to observe changing levels of OPN secretion during culture. The proposed platform can potentially be adopted for monitoring a variety of biological applications and further developed into a fully automated system for applications in advanced cellular biomanufacturing.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Dispositivos Lab-On-A-Chip , Osteogênese , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Osteopontina/análise , Osteopontina/metabolismo , Células-Tronco Mesenquimais/citologia , Imunoensaio/métodos , Imunoensaio/instrumentaçãoRESUMO
Diluting organic semiconductors with a host insulating polymer is used to increase the electronic mobility in organic electronic devices, such as thin film transistors, while considerably reducing material costs. In contrast to organic electronics, bioelectronic devices such as the organic electrochemical transistor (OECT) rely on both electronic and ionic mobility for efficient operation, making it challenging to integrate hydrophobic polymers as the predominant blend component. This work shows that diluting the n-type conjugated polymer p(N-T) with high molecular weight polystyrene (10 KDa) leads to OECTs with over three times better mobility-volumetric capacitance product (µC*) with respect to the pristine p(N-T) (from 4.3 to 13.4 F V-1 cm-1 s-1) while drastically decreasing the amount of conjugated polymer (six times less). This improvement in µC* is due to a dramatic increase in electronic mobility by two orders of magnitude, from 0.059 to 1.3 cm2 V-1 s-1 for p(N-T):Polystyrene 10 KDa 1:6. Moreover, devices made with this polymer blend show better stability, retaining 77% of the initial drain current after 60 minutes operation in contrast to 12% for pristine p(N-T). These results open a new generation of low-cost organic mixed ionic-electronic conductors where the bulk of the film is made by a commodity polymer.