Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurotherapeutics ; 18(3): 1748-1767, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829414

RESUMO

Oleoylethanolamide (OEA) is an endocannabinoid that has been proposed to prevent neuronal damage and neuroinflammation. In this study, we evaluated the effects of OEA on the disruption of both cerebellar structure and physiology and on the behavior of Purkinje cell degeneration (PCD) mutant mice. These mice exhibit cerebellar degeneration, displaying microtubule alterations that trigger the selective loss of Purkinje cells and consequent behavioral impairments. The effects of different doses (1, 5, and 10 mg/kg, i.p.) and administration schedules (chronic and acute) of OEA were assessed at the behavioral, histological, cellular, and molecular levels to determine the most effective OEA treatment regimen. Our in vivo results demonstrated that OEA treatment prior to the onset of the preneurodegenerative phase prevented morphological alterations in Purkinje neurons (the somata and dendritic arbors) and decreased Purkinje cell death. This effect followed an inverted U-shaped time-response curve, with acute administration on postnatal day 12 (10 mg/kg, i.p.) being the most effective treatment regimen tested. Indeed, PCD mice that received this specific OEA treatment regimen showed improvements in motor, cognitive and social functions, which were impaired in these mice. Moreover, these in vivo neuroprotective effects of OEA were mediated by the PPARα receptor, as pretreatment with the PPARα antagonist GW6471 (2.5 mg/kg, i.p.) abolished them. Finally, our in vitro results suggested that the molecular effect of OEA was related to microtubule stability and structure since OEA administration normalized some alterations in microtubule features in PCD-like cells. These findings provide strong evidence supporting the use of OEA as a pharmacological agent to limit severe cerebellar neurodegenerative processes.


Assuntos
Morte Celular/efeitos dos fármacos , Doenças Cerebelares/tratamento farmacológico , Modelos Animais de Doenças , Endocanabinoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Ácidos Oleicos/uso terapêutico , Células de Purkinje/efeitos dos fármacos , Animais , Morte Celular/fisiologia , Células Cultivadas , Doenças Cerebelares/genética , Doenças Cerebelares/patologia , Endocanabinoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Ácidos Oleicos/farmacologia , Células de Purkinje/patologia
2.
Psychopharmacology (Berl) ; 231(4): 695-706, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24081550

RESUMO

RATIONALE: Nitric oxide (NO) is a messenger synthesized in both the neuronal and glial populations by nitric oxide synthase type 1 (NOS1). Nicotine regulates NO production in a sex-dependent manner, both molecules being involved in motor function. OBJECTIVE: The present study evaluates sex differences in motor coordination, general movement, and anxiety-related responses resulting from both constant and continuous nicotine treatment and the genetic depletion of NOS1 activity. METHODS: Male and female mice were analyzed with the open-field and the rotarod tests. To understand the role of NO, knockout mice for NOS1 (NOS1-/-) were analyzed. Nicotine was administered continuously at a dose of 24 mg/kg/day via osmotic mini-pumps over 14 days because the behavioral effects elicited are similar to those observed with discontinuous administration. RESULTS: Data analyses revealed noteworthy sex differences derived from NOS1 depletion. Control NOS1-/- males exhibited an exacerbated anxiety-related response in relation to control NOS1-/- females and control wild-type (WT) males; these differences disappeared in the nicotine-administered NOS1-/- males. Additionally, nicotine administration differentially affected the horizontal movements of NOS1-/- females with respect to WT animals. NO depletion affected male but not female motor coordination improvement along the test days. However, the drug affected female motor coordination only at the end of the administration period. CONCLUSIONS: We show for the first time that NO affects motor and anxiety behaviors in a sex-dependent manner. Moreover, the behavioral effects of constant nicotine administration are dimorphic and dependent on NO production.


Assuntos
Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Atividade Motora/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Defecação/efeitos dos fármacos , Defecação/fisiologia , Feminino , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Prática Psicológica , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA