Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Talanta ; 281: 126895, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39298810

RESUMO

This study is the first successful application of a nanomaterial-supported molecularly imprinted polymer (MIP)-based electrochemical sensor for the sensitive and selective determination of apigenin (API), which is a naturally occurring product of the flavone class that is an aglycone of several glycosides. Secondary metabolites are biologically active substances produced by plants in response to various environmental factors. The levels of these compounds can vary depending on factors such as climate, soil conditions and the season in which the plants are grown. Therefore, the analysis of these compounds is essential to properly understand the biological effects of plant extracts and to ensure their safe use. To increase the glassy carbon electrode (GCE) surface's active surface area and porosity, zinc oxide nanoparticles (ZnO NPs) were integrated into the MIP-based electrochemical sensor design. Tryptophan methacrylate (TrpMA) was selected as the functional monomer along with other MIP components such as 2-hydroxyethyl methacrylate (HEMA, basic monomer), 2-hydroxy-2-methylpropiophenone (initiator), and ethylene glycol dimethacrylate (EGDMA, crosslinking agent). The morphological and electrochemical characterizations of the developed API/ZnO NPs/TrpMA@MIP-GCE sensor were performed with scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The indirect measurement approach via 5.0 mM [Fe(CN)6]3-/4- solution was utilized to determine API in the linear range of 1.0x10-13 M - 1.0x10-12 M. The limit of detection (LOD) and limit of quantification (LOQ) for standard solutions were found to be 2.47x10-14 and 8.23x10-14 M, respectively. In addition, the extraction processes were carried out using ultrasound-assisted extraction (UAE) and maceration (MCR) procedures. For Apium graveolens L., Petroselinum crispum (Mill.) Fuss and herbal supplement, the API recoveries varied from 98.79 % to 102.71 %, with average relative standard deviations (RSD) less than 2.25 % in all three cases. The sensor's successful performance in the presence of components with chemical structures similar to the API was also demonstrated, revealing its unique selectivity.

2.
Anal Bioanal Chem ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289201

RESUMO

Upadacitinib (UPA) is a selective and reversible oral Janus kinase (JAK) 1 inhibitor and is of great importance in treating inflammatory bowel disease (Zheng et al., Int Immunopharmacol 126:111229, 2024; Foy et al., JAAD Case Rep 42:20-22, 2023). Although there are limitations to the effectiveness of UPA, it has received positive responses in clinical trials and is approved for the treatment of atopy dermatitis (AD) (Li et al., Int Immunopharmacol 125:111193, 2023). In this study, a nanoparticle-doped molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for sensitive and selective detection of UPA. The developed sensor was designed as a thin film layer using the photopolymerization method on the surface of the prepared nanoparticle-doped polymerization solution glassy carbon electrode (GCE). Various nanoparticles, such as multi-walled carbon nanotube, titanium dioxide, oxide, and zinc oxide (ZnO) nanoparticles, were the most suitable for UPA. Surface characterization of the developed sensor was done by scanning electron microscopy (SEM), and electrochemical characterization was done by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The quantitative analysis of UPA was performed in 5.0 mM [Fe (CN)6]3-/4- solution using the differential pulse voltammetry (DPV) technique. Under optimum conditions, the calibration range was between 0.1 and 1 pM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated as 0.005 pM and 0.017 pM, respectively. The sensor's accuracy was proven by performing a recovery study in serum. The sensor's selectivity was also evaluated using common interfering substances such as KNO3, CaCl2, Na2SO4, uric acid, ascorbic acid, dopamine, and paracetamol. According to the results obtained, the performance of the designed sensor was found to be quite sensitive and selective in determining UPA. The developed UPA-ZnO/3-APBA@MIP-GCE sensor showed high sensitivity and selectivity towards UPA. In addition, the selectivity, the most important feature of the MIP-based sensor, was confirmed by imprinting factor (IF) calculations using tofacitinib (TOF) and ruxolitinib (RUX). The sensor's unique selectivity is demonstrated by its successful performance even in the presence of UPA impurities.

3.
Talanta ; 281: 126810, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241641

RESUMO

Clozapine (CLO) is an atypical antipsychotic drug indicated for the treatment of schizophrenia. The treatment effectiveness of CLO is better than that of other atypical antipsychotics, and it has the advantage of being able to determine its effectiveness by measuring its concentration in the patient's blood. Thus, sensitive, selective, and accurate determination of CLO in blood is highly significant for treatment monitoring. This study describes the design and fabrication of a molecularly imprinted polymer (MIP)-based electrochemical sensor for CLO determination. This is the first MIP-based electrochemical application in the literature for CLO determination. Employing the thermal polymerization approach, the MIP was formed on the glassy carbon electrode (GCE) using CLO as the template, trans-3-(3-Pyridyl)acrylic acid (3,3-TA) as the functional monomer, and the support of zinc oxide nanoparticles (ZnO NPs). Elaborate characterizations in terms of surface morphology and electrochemistry were performed via scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) methods. An indirect approach was employed to determine CLO in standard solution, real human biological samples, and tablet formulation, using 5 × 10-3 M [Fe(CN)6]3-/4- solution as the redox probe. The limit of detection (LOD) values for the standard solution and serum sample were calculated as 2.9 × 10-11 M and 6.01 × 10-12 M, respectively. These values and recovery studies confirmed the sensor's sensitivity and feasibility. The measurements in the presence of similarly structured compounds (olanzapine and quetiapine fumarate) verified the sensor's superior selectivity. Moreover, the developed sensor's performance was compared and verified using an LC-MS/MS method using the student's t-test and F-test.

4.
Talanta ; 281: 126791, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39232252

RESUMO

Thermal polymerization (TP) and electropolymerization (EP) are the two methods used in this study to explore the molecular imprinting process. To detect the antiviral medication lopinavir (LPV), an inhibitor of enzyme HIV-1 protease that is co-formulated with ritonavir (RTV) to extend its half-life in the body, with greater precision, these methods were merged with an electrochemical sensor. The sensors were created on glassy carbon electrodes (GCE) based on molecularly imprinted polymers (MIP) using TP with methacrylic acid (MAA) functional monomer and EP with p-aminobenzoic acid (PABA) functional monomer. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and electrochemical methods were utilized to examine the technical features of the suggested sensors. For both approaches, the necessary optimization investigations were carried out. Different LPV concentrations, ranging from 1.0 pM to 17.5 pM in drug solution and commercial human serum samples, were used to validate the analytical efficiency of the two sensors and compare their electroanalytical behaviour. For TP-LPV@MIP/GCE and EP-LPV@MIP/GCE, the corresponding limit of detection (LOD) was 2.68 × 10-13 M (0.169 pg mL-1) and 1.79 × 10-13 M (0.113 pg mL-1) in standard solutions, and 2.87 × 10-13 M (0.180 pg mL-1) and 2.91 × 10-13 M (0.183 pg mL-1) in serum samples. For the measurement of LPV in tablet form and serum samples, the proposed TP-LPV@MIP/GCE and EP-LPV@MIP/GCE sensors provide good recovery, demonstrating 99.85-101.16 % and 100.36-100.97 % recovery, respectively. The imprinting factor was utilized to demonstrate the selectivity of the suggested sensors by utilizing several anti-viral drugs that are structurally comparable to LPV. Additionally, the constructed sensors were examined for the potential impacts of interferences and the stability during the storage.

5.
Crit Rev Anal Chem ; : 1-12, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178137

RESUMO

One of the most prevalent neurodegenerative diseases is Alzheimer's disease (AD). The hallmarks of AD include the accumulation of amyloid plaques and neurofibrillary tangles, which cause related secondary diseases, progressive neurodegeneration, and ultimately death. The most prevalent cell type in the human central nervous system, astrocytes, are crucial for controlling neuronal function. Glial fibrillary acidic protein (GFAP) is released from tissue into the bloodstream due to astrocyte breakdown in neurological diseases. Increased levels of GFAP in the serum can function as blood markers and be an effective prognostic indicator to help diagnose neurological conditions early on, from stroke to neurodegenerative diseases. The human central nervous system (CNS) is greatly affected by diseases associated with blood GFAP levels. These include multiple sclerosis, intracerebral hemorrhage, glioblastoma multiforme, traumatic brain injuries, and neuromyelitis optica. GFAP demonstrates a strong diagnostic capacity for projecting outcomes following an injury. Furthermore, the increased ability to identify GFAP protein fragments helps facilitate treatment, as it allows continuous screening of CNS injuries and early identification of potential recurrences. GFAP has recently gained attention due to data showing that the plasma biomarker is effective in identifying AD pathology. AD accounts for 60-70% of the approximately 50 million people with dementia worldwide. It is critical to develop molecular markers for AD, whose number is expected to increase to about 3 times and affect humans by 2050, and to investigate possible targets to confirm their effectiveness in the early diagnosis of AD. In addition, most diagnostic methods currently used are image-based and do not detect early disease, i.e. before symptoms appear; thus, treatment options and outcomes are limited. Therefore, recently developed methods such as point-of-care (POC), on-site applications, and enzyme-linked immunosorbent assay-polymerase chain reaction (ELISA-PCR) that provide both faster and more accurate results are gaining importance. This systematic review summarizes published studies with different approaches such as immunosensor, lateral flow, POC, ELISA-PCR, and molecularly imprinted polymer using GFAP, a potential blood biomarker to detect neurological disorders. Here, we also provide an overview of current approaches, analysis methods, and different future detection strategies for GFAP, the most popular biosensing field.

6.
Talanta ; 278: 126510, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981154

RESUMO

A novel and robust electrochemical sensing tool for the determination of vismodegib (VIS), an anticancer drug, has been developed by integrating the selective recognition capabilities of molecularly imprinted polymer (MIP) and the sensitivity enhancement capability of metal-organic framework (MOF). Prior to this step, the electrochemical behavior of VIS was investigated using a bare glassy carbon electrode (GCE). It was observed that in 0.5 M H2SO4 solution as electrolyte, VIS has an oxidation peak around 1.3 V and the oxidation mechanism is diffusion controlled. The determination of VIS in a standard solution using a bare GCE showed a linear response in the concentration range from 2.5 µM to 100 µM, with a limit of detection (LOD) of 0.75 µM. Since sufficient sensitivity and selectivity could not be achieved with bare GCE, a MIP sensor was developed in the next step of the study. For this purpose, the GCE surface was first modified by drop casting with as-synthesized Co-MOF. Subsequently, a MIP network was synthesized via a thermal polymerization approach using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomer and VIS as template. MOFs are ideal electrode materials due to their controllable and diverse morphologies and modifiable surface properties. These characteristics enable the development of MIPs with more homogeneous binding sites and high affinity for target molecules. Integrating MOFs could help the performance of sensors with the desired stability and reproducibility. Electrochemical analysis revealed an observable enhancement of the output signal by the incorporation of MOF molecules, which is consistent with the sensitivity-enhancing role of MOF by providing more anchoring sites for the attachment of the polymer texture to the electrode surface. This MOF-MIP sensor exhibited impressive linear dynamic ranges ranging from 0.1 to 1.0 pM for VIS, with detection limits in the low picomolar range. In addition, the MOF-MIP sensor offers high accuracy, selectivity and precision for the determination of VIS, with no interference observed from complex media of serum samples. Additionally, in this study, Analytical GREEnness metric (AGREE), Analytical GREEnness preparation (AGREEprep) and Blue Applicability Grade Index (BAGI) were used to calculate the green profile score.


Assuntos
Anilidas , Antineoplásicos , Técnicas Eletroquímicas , Eletrodos , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Piridinas , Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Piridinas/química , Técnicas Eletroquímicas/métodos , Antineoplásicos/análise , Antineoplásicos/química , Antineoplásicos/sangue , Anilidas/química , Anilidas/análise , Anilidas/sangue , Limite de Detecção , Impressão Molecular , Polímeros/química
7.
J Pharm Biomed Anal ; 248: 116283, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850885

RESUMO

This study presented a new method to design a MIP-based electrochemical sensor that could improve the selective and sensitive detection of ipratropium bromide (IPR). The polymeric film was designed using 2-hydroxyethyl methacrylate (HEMA) as the basic monomer, 2-hydroxy-2-methylpropiophenone as the initiator, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and N-methacryloyl-L-aspartic acid (MAAsp) as the functional monomer. The presence of MAAsp results in the functional groups in imprinting binding sites, while the presence of poly(vinyl alcohol) (PVA) allows the generation of porous materials not only for sensitive sensing but also for avoiding electron transport limitations. Electrochemical characterizations of the changes at each stage of the MIP preparation process were confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In addition, morphological characterizations of the developed sensor were performed using scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Theoretical calculations were also performed to explain/confirm the experimental results better. It was found that the results of the calculations using the DFT approach agreed with the experimental data. The MAAsp-IPR@MIP/GCE sensor was developed using the photopolymerization method, and the sensor surface was obtained by exposure to UV lamp radiation at 365 nm. The improved MIP-based electrochemical sensor demonstrated the ability to measure IPR for standard solutions in the linear operating range of 1.0 × 10-12-1.0 × 10-11 M under optimized conditions. For standard solutions, the limit of detection (LOD) and limit of quantification (LOQ) were obtained as 2.78 × 10-13 and 9.27 × 10-13 M, respectively. The IPR recovery values for the inhalation form were calculated as 101.70 % and 100.34 %, and the mean relative standard deviations (RSD) were less than 0.76 % in both cases. In addition, the proposed modified sensor demonstrated remarkable sensitivity and selectivity for rapid assessment of IPR in inhalation forms. The sensor's unique selectivity is demonstrated by its successful performance even in the presence of IPR impurities.


Assuntos
Técnicas Eletroquímicas , Polímeros Molecularmente Impressos , Polímeros Molecularmente Impressos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Impressão Molecular/métodos , Modelos Moleculares , Limite de Detecção , Metacrilatos/química , Espectroscopia Dielétrica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
8.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730044

RESUMO

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Assuntos
Técnicas Eletroquímicas , Limite de Detecção , Polímeros Molecularmente Impressos , Zinco , Polímeros Molecularmente Impressos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Zinco/química , Grafite/química , Humanos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/análise , Aminoimidazol Carboxamida/sangue , Aminoimidazol Carboxamida/química , Nanoestruturas/química , Eletrodos
9.
Bioelectrochemistry ; 158: 108701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38582008

RESUMO

Herein, we proposed a new approach to design a MIP-based electrochemical sensor with carbon nanofiber (CNF), which could improve its conductivities as well as electrode sensitivity and successful detection of dasatinib (DAS). CNFs are capable of forming high porosity with significant interconnected porous networks. The poly(2-hydroxyethyl-methacrylate-N-methacryloyl-L-tyrosine) (PHEMA-MATyr) copolymer was synthesized in the presence of both CNF and DAS by photopolymerization. After optimization of the parameters, the modified MIP-based electrochemical sensor demonstrated the ability to determine the DAS in the linear working range of 1.0 × 10-14-1.0 × 10-13 M for the standard solution and commercial serum samples with a LOD of 1.76 × 10-15 and 2.46 × 10-15, respectively. Good linearity for DAS was observed with correlation coefficients (r) of 0.996 and 0.997 for the standard solution and commercial serum samples, respectively. The recoveries of the DAS ranged from 99.45 % to 99.53 % for the tablet dosage form and commercial serum samples, with average relative standard deviations below 1.96 % in both cases. The proposed modified sensor demonstrated significant sensitivity and selectivity for the rapid determination of DAS in commercial serum samples and tablet form.


Assuntos
Carbono , Dasatinibe , Técnicas Eletroquímicas , Limite de Detecção , Impressão Molecular , Nanofibras , Nanofibras/química , Dasatinibe/sangue , Carbono/química , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Humanos , Eletrodos
10.
Crit Rev Anal Chem ; : 1-17, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630637

RESUMO

Ovarian cancer, which affects the female reproductive organs, is one of the most common types of cancer. Since this type of cancer has a high mortality rate from gynaecological cancers, the scientific community shows great interest in studies on its treatment. Chemotherapy, radiotherapy, and surgical treatment methods are used in its treatment. In the absence of targeted treatments in these treatment methods, side effects occur in patients, and patients show resistance to the drug. In addition, the underlying causes of ovarian cancer are still not fully known. The scientific world thinks that genetic factors, environmental conditions, and consumed foods may cause this cancer. The most important factor in the treatment of ovarian cancer is early diagnosis. Therefore, the drugs used in the treatment of ovarian cancer are platinum-based anticancer drugs. In addition to these drugs, the most preferred treatment method recently is targeted treatment approaches using poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In this review, studies on the sensitive analysis of the treatment methods of these new-generation drugs used in the treatment of ovarian cancer have been comprehensively examined. In addition, the basic features, structural aspects, and biological data of analytical methods used in treatments with new-generation drugs are explained. Analytical studies carried out in the literature in recent years aim to show future developments in how these new-generation drugs are used today and to guide future studies by comprehensively examining and explaining the structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies. Finally, in this study, the methods used in the analysis of drugs used in the treatment of ovarian cancer and the studies conducted between 2015 and 2023 were discussed in detail.

11.
Crit Rev Anal Chem ; : 1-35, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650305

RESUMO

The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.

12.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630200

RESUMO

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Assuntos
Ácidos Borônicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Eletrodos , Guanina , Metacrilatos
13.
ACS Omega ; 9(8): 9564-9576, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434833

RESUMO

Acyclovir (ACV), a synthetic nucleoside derivative of purine, is one of the most potent antiviral medications recommended in the specific management of varicella-zoster and herpes simplex viruses. The molecularly imprinted polymer (MIP) was utilized to create an effective and specific electrochemical sensor using a straightforward photopolymerization process to determine ACV. The polymeric thin coating was developed using the template molecule ACV, a functional monomer acrylamide, a basic monomer 2-hydroxyethyl methacrylate, a cross-linker ethylene glycol dimethacrylate, and a photoinitiator 2-hydroxy-2-methyl propiophenone on the exterior of the glassy carbon electrode (GCE). Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed for the purpose of characterizing the constructed sensor (AM-ACV@MIP/GCE). Differential pulse voltammetry and a 5 mM ferrocyanide/ferricyanide ([Fe(CN)6]3-/4-) redox reagent were used to detect the ACV binding to the specific cavities on MIP. The study involves density functional theory (DFT) calculations, which were conducted to investigate template-functional monomer interactions thoroughly, calculate template-functional monomer interaction energies, and determine the optimal template/functional monomer ratio. DFT calculations were performed using Becke's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) method and 6-31G(d,p) basis set. The sensor exhibits linear performance throughout the concentration region 1 × 10-11 to 1 × 10-10 M, and the limit of detection and limit of quantification were 7.15 × 10-13 M and 2.38 × 10-12 M, respectively. For the electrochemical study of ACV, the sensor demonstrated high accuracy, precision, robustness, and a short detection time. Furthermore, the developed electrochemical sensor exhibited exceptional recovery in tablet dosage form and commercial human blood samples, with recoveries of 99.40 and 100.44%, respectively. The findings showed that the AM-ACV@MIP/GCE sensor would effectively be used to directly assess pharmaceuticals from actual specimens and would particularly detect ACV compared to structurally similar pharmaceutical compounds.

14.
Talanta ; 273: 125883, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521023

RESUMO

Quercetin (QUE) is a powerful antioxidant and one of the common phenolic compounds found in plants, vegetables, and fruits, which has shown many pharmacological activities. The complex nature of the matrix in which QUE is found and its importance and potential uses in diverse applications force the researchers to develop selective and sensitive sensors. In the present work, a novel molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the selective and sensitive determination of the QUE in plant extracts and food supplements. Tryptophan methacrylate (TrpMA) was chosen as the functional monomer, whereas the photopolymerization (PP) method was applied using a glassy carbon electrode (GCE). Electrochemical and morphological characterizations of the developed sensor (TrpMA@QUE/MIP-GCE) were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The linear range of the developed sensor was determined to be in the range of 1.0-25 pM, while the limit of detection (LOD) was calculated to be 0.235 pM. In conclusion, The TrpMA@QUE/MIP-GCE sensor might be classified as a promising platform for selective and sensitive determination of QUE not only in plant extracts but also in commercial food supplements because of its reliability, reproducibility, repeatability, stability, and fast response time.


Assuntos
Fragaria , Impressão Molecular , Rubus , Polímeros/química , Quercetina , Reprodutibilidade dos Testes , Metanol , Técnicas Eletroquímicas/métodos , Carbono/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos , Extratos Vegetais
15.
Anal Methods ; 16(10): 1480-1488, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372557

RESUMO

Rutin (RUT), a natural flavonoid with various beneficial pharmacological actions such as cardioprotective, antioxidant, anti-inflammatory, neuroprotective, etc., is found in the content of many plants that are consumed daily. Due to the healthful effects, RUT is also included in the composition of various herbal supplement samples. Therefore, it is highly important to develop a sensor with high selectivity and sensitivity to determine RUT in complex samples. In this study, it was aimed to take advantage of the cheap, easy, and sensitive nature of electrochemistry and, in addition, to improve the selectivity. For this purpose, the functional monomer selected in the fabricated molecularly imprinted polymer (MIP) was N-methacryloyl-L-aspartic acid (MA-Asp) while photopolymerization (PP) was applied as the polymerization route. After completing critical optimization steps, the developed sensor (MA-Asp@RUT/MIP-GCE) was characterized electrochemically and morphologically. As a result of analytical performance evaluation in standard solution, the linear response of the sensor was found in the concentration range between 1 and 10 pM with a detection limit of 0.269 pM. The recovery studies from plant extract and commercial herbal supplement samples emphasized accuracy and applicability. In imprinting factor studies figuring out quite good selectivity, molecules with a structure similar to RUT were selected as competitors to prove the affinity of the sensor against RUT. Consequently, the MA-Asp@RUT/MIP-GCE sensor offers a more sensitive and selective method thanks to its indirect analysis approach and also stands out with the diversity of its real sample application compared to other available studies.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Extratos Vegetais , Polímeros/química , Rutina , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Suplementos Nutricionais
16.
Crit Rev Anal Chem ; : 1-20, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252120

RESUMO

Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.

17.
Anal Bioanal Chem ; 416(9): 2277-2300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279011

RESUMO

Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.


Assuntos
Neoplasias Pulmonares , Impressão Molecular , Humanos , Masculino , Biomarcadores Tumorais/análise , Neoplasias Pulmonares/diagnóstico , Impressão Molecular/métodos , Próstata/química , Pulmão/química , Técnicas Eletroquímicas/métodos
18.
Anal Chim Acta ; 1280: 341866, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858567

RESUMO

BACKGROUND: Sorafenib (SOR) is a multikinase inhibitor anticancer drug that is used in treating non-small cell lung cancer. In this work, we focused on developing nanomaterial-supported smart porous interfaces by following the molecular imprinting approach for the selective determination of SOR. Determination-based studies in the literature for SOR are limited, and they are chromatographic techniques-based; hence, there is a need in the literature to elaborate the selective and sensitive analysis/monitoring of SOR in both biological and pharmaceutical samples with more studies. RESULTS: The results showed that adding ZnO NPs enhanced the signal five times compared to the solo molecularly imprinted polymer (MIP). Under the optimized conditions, ZnO/AMPS@MIP-GCE showed a linear response in the concentration range between 1.0 × 10-12 and 1.0 × 10-11 M with LOD and LOQ values of 2.25 × 10-13 M and 7.51 × 10-13 M, respectively, in the serum sample. The selectivity study was conducted against common cations, anions, and compounds such as dopamine, paracetamol, ascorbic acid, and uric acid. Also, the imprinting factor (IF) analysis was performed on selected drug substances having structural similarities to SOR and the relative IF values of regorafenib, leflunomide, teriflunomide, nilotinib, axitinib, and dasatinib indicated the selectivity of the developed sensor for SOR. Finally, ZnO/AMPS@MIP-GCE was implemented to determine SOR in the spiked commercial human serum samples and tablet dosage form with bias% between -0.43 and + 0.66. SIGNIFICANCE AND NOVELTY: This study is the first electrochemical study for the determination of SOR, and thanks to the ZnO NPs supported MIP sensor, it stands out in terms of both high sensitivity and superior selectivity. Also, this designed sensor provides controlled orientation of the template and complete removal of templates in a one-step process, allowing extremely low detection and quantification limits.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Impressão Molecular , Óxido de Zinco , Humanos , Polímeros Molecularmente Impressos , Polímeros/química , Sorafenibe , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção , Eletrodos
19.
Anal Methods ; 15(40): 5316-5322, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37807938

RESUMO

In this research, two different molecularly imprinted polymer (MIP)-based electrochemical sensors were proposed for the determination of tolvaptan (TOL). Photopolymerization (PP) and thermal polymerization (TP) techniques were developed for the determination of TOL. The advantages of MIP were used to design an electrochemical sensor for selective and sensitive determination of TOL. TOL was determined on a glassy carbon electrode (GCE) using differential pulse voltammetry (DPV) for both techniques. Some important parameters affecting the sensor efficiency, such as template/monomer ratio, PP and TP time, drop volume, removal solutions, removal and rebinding time, etc., were optimized. The surface characterization of the proposed MIP-based electrochemical sensors was carried out with electrochemical characterization by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. It was extended with the scanning electron microscopy (SEM) technique. Under optimal conditions, the developed sensors showed good linearity between 1.0 × 10-11 M and 1.0 × 10-10 M, and 2.5 × 10-11 M and 2.5 × 10-10 M for PP and TP, respectively. Low detection limits (2.89 × 10-12 M (PP) and 1.88 × 10-13 M (TP)) were also obtained for TOL determination. The applicability of the proposed sensor was evaluated using tablet and commercial human serum samples. Interference and imprinting factor studies verified the selectivity and specificity of the proposed sensors, and the efficiency of the sensors was verified using an unprinted polymer for comparison at each step.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Tolvaptan , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção , Comprimidos
20.
Anal Methods ; 15(19): 2309-2317, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37129572

RESUMO

Sugammadex (SUG) is a synthetically modified γ-cyclodextrin derivative used in hospitals after surgeries to reverse the neuromuscular blockade induced by rocuronium or vecuronium. In this study, we aimed to develop the first electroanalytical quantification method for sugammadex by using molecular imprinting (MIP) via the electropolymerization (EP) technique. An EP-MIP film was formed by EP on a screen-printed gold electrode (SPAuE) and a new electrochemical sensor, EP-MIP(SUG)/SPAuE, was fabricated using the 4-aminophenol monomer with copper ions to enhance the MIP-binding site. Surface and electrochemical characterization of the EP-MIP(SUG)/SPAuE sensor have been done via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). After screening and optimization studies were carried out to fabricate a MIP-based electrochemical sensor, the analytical performance of EP-MIP(SUG)/SPAuE and the validation parameters were tested according to the ICH guidelines. The specificity/selectivity of the developed sensor has been shown by using common interferents found in the biological fluids and also molecules having similar structures, such as α-cyclodextrin, ß-cyclodextrin, and γ-cyclodextrin. As a result, a quantitative analysis method has been developed and validated by using the EP-MIP(SUG)/SPAuE sensor in the concentration range of 0.1-1.0 pM with very high sensitivity (limit of detection: 27.3 fM). The applicability of the method has been shown for bulk drug substances, pharmaceutical dosage forms, and commercial serum samples with good recovery and RSD% results. The EP-MIP(SUG)/SPAuE is the first electrochemical sensor developed for the determination of sugammadex serving the aims of simplicity, short analysis time, and low cost, and has the potential to be adapted in the future as a portable and/or wearable sensor via miniaturization.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Sugammadex , Polímeros/química , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA