Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672859

RESUMO

Near-infrared spectroscopy has become a common quality assessment tool for fishmeal products during the last two decades. However, to date it has not been used for active online quality monitoring during fishmeal processing. Our aim was to investigate whether NIR spectroscopy, in combination with multivariate chemometrics, could actively predict the changes in the main chemical quality parameters of pelagic fishmeal and oil during processing, with an emphasis on lipid quality changes. Results indicated that partial least square regression (PLSR) models from the NIR data effectively predicted proximate composition changes during processing (with coefficients of determination of an independent test set at RCV2 = 0.9938, RMSECV = 2.41 for water; RCV2 = 0.9773, RMSECV = 3.94 for lipids; and RCV2 = 0.9356, RMSECV = 5.58 for FFDM) and were successful in distinguishing between fatty acids according to their level of saturation (SFA (RCV2=0.9928, RMSECV=0.24), MUFA (RCV2=0.8291, RMSECV=1.49), PUFA (RCV2=0.8588, RMSECV=2.11)). This technique also allowed the prediction of phospholipids (PL RCV2=0.8617, RMSECV=0.11, and DHA (RCV2=0.8785, RMSECV=0.89) and EPA content RCV2=0.8689, RMSECV=0.62) throughout processing. NIR spectroscopy in combination with chemometrics is, thus, a powerful quality assessment tool that can be applied for active online quality monitoring and processing control during fishmeal and oil processing.

2.
Curr Opin Biotechnol ; 87: 103100, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471403

RESUMO

The impact-intensive and rapidly growing pharmaceutical industry must ensure its sustainability. This study reveals that environmental sustainability assessments have been conducted for only around 0.2% of pharmaceuticals, environmental impacts have significant variations among the assessed products, and different impact categories have not been consistently studied. Highly varied impacts require assessing more products to understand the industry's sustainability status. Reporting all impact categories will be crucial, especially when comparing production technologies. Biological production of (semi)synthetic pharmaceuticals could reduce their environmental costs, though the high impacts of biologically produced monoclonal antibodies should also be optimized. Considering the sustainability potential of biopharmaceuticals from economic, environmental, and social perspectives, collaboratively guiding their immense market growth would lead to the industry's sustainability transition.

3.
Nat Commun ; 15(1): 1489, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413572

RESUMO

Blue denim, a billion-dollar industry, is currently dyed with indigo in an unsustainable process requiring harsh reducing and alkaline chemicals. Forming indigo directly in the yarn through indican (indoxyl-ß-glucoside) is a promising alternative route with mild conditions. Indican eliminates the requirement for reducing agent while still ending as indigo, the only known molecule yielding the unique hue of blue denim. However, a bulk source of indican is missing. Here, we employ enzyme and process engineering guided by techno-economic analyses to develop an economically viable drop-in indican synthesis technology. Rational engineering of PtUGT1, a glycosyltransferase from the indigo plant, alleviated the severe substrate inactivation observed with the wildtype enzyme at the titers needed for bulk production. We further describe a mild, light-driven dyeing process. Finally, we conduct techno-economic, social sustainability, and comparative life-cycle assessments. These indicate that the presented technologies have the potential to significantly reduce environmental impacts from blue denim dyeing with only a modest cost increase.


Assuntos
Indicã , Índigo Carmim , Corantes , Plantas , Meio Ambiente
4.
Sci Total Environ ; 904: 166778, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660828

RESUMO

This study investigated the technical, environmental, and economic feasibility of using recycled construction material (concrete) as substrate in constructed wetlands for cold climate decentralized domestic wastewater treatment. The wastewater treatment efficiency was examined, and life cycle assessment (LCA) and cost benefit analysis were performed. The technical feasibility was assessed in lab-scale two-stage wetland systems with recycled concrete or lava stone as substrates, which were operated at 22 °C and 5 °C with local wild plants and vegetables. The wetlands removed ∼85 % and ∼51 % of organics and ∼67 % and ∼34 % TN at 22 °C and 5 °C, respectively; no significant difference was found between concrete and lava stone. The heavy metal contents in the cultivated vegetables met WHO standards for human consumption, showing the feasibility of nutrient recovery from the treated wastewater. A comparative LCA of septic tank standalone, septic tank + constructed wetland (with recycled concrete), and gravity-driven ceramic membrane (GDCM) system was performed. This aims to illustrate the benefits of intensifying the existing treatment process (i.e., septic tank) with the constructed wetland, with an alternative membrane-based treatment technique as benchmark. The LCA results revealed that using waste materials as the substrate in constructed wetlands could reduce the environmental impact of wetlands. Installation of the wetland as posttreatment of the septic tank (1) could reduce ∼50 % of eutrophication potential without increasing global warming impact compared to the septic tank alone; (2) had ∼90 % higher global warming impact and ∼40 % lower eutrophication impact compared to GDCM. Economic analysis revealed that the total cost of septic tank + constructed wetland (0.143 €/m3) was comparable to the septic tank alone (merely 3.5 % difference), and 49 % lower than that of GDCM (with recycled membranes). Therefore, the septic tank + constructed wetland scenario could be favorable for sensitive areas with eutrophication potential regarding its technical, economical, and environmental feasibility.

5.
Trends Biotechnol ; 38(11): 1203-1214, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32423725

RESUMO

Biochemical production faces economic and environmental challenges that need to be overcome to enable a viable and sustainable bioeconomy. We propose an assessment framework that consistently combines environmental and economic indicators to support optimized biochemical production at early development stages. We define internally consistent system boundaries and a comprehensive set of quantitative indicators from life cycle assessment (LCA) and techno-economic assessment (TEA) to combine environmental and economic performance in a single score. Our framework enables the identification of trade-offs across environmental and economic aspects over the entire biochemical life cycle. This approach provides input for the optimization of future biochemicals in terms of overall sustainability, to overcome prevailing obstacles in the development of biochemical production processes.


Assuntos
Fenômenos Bioquímicos , Economia , Meio Ambiente , Bioquímica/economia , Bioquímica/ética , Indústria Química/economia , Indústria Química/ética , Humanos , Desenvolvimento Sustentável/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA