Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell ; 11: 143-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756204

RESUMO

The AMPK/SNF1 pathway governs energy balance in eukaryotic cells, notably influencing glucose de-repression. In S. cerevisiae, Snf1 is phosphorylated and hence activated upon glucose depletion. This activation is required but is not sufficient for mediating glucose de-repression, indicating further glucose-dependent regulation mechanisms. Employing fluorescence recovery after photobleaching (FRAP) in conjunction with non-linear mixed effects modelling, we explore the spatial dynamics of Snf1 as well as the relationship between Snf1 phosphorylation and its target Mig1 controlled by hexose sugars. Our results suggest that inactivation of Snf1 modulates Mig1 localization and that the kinetic of Snf1 localization to the nucleus is modulated by the presence of non-fermentable carbon sources. Our data offer insight into the true complexity of regulation of this central signaling pathway in orchestrating cellular responses to fluctuating environmental cues. These insights not only expand our understanding of glucose homeostasis but also pave the way for further studies evaluating the importance of Snf1 localization in relation to its phosphorylation state and regulation of downstream targets.

2.
PLoS One ; 17(10): e0276112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227951

RESUMO

Flux balance analysis (FBA) is a powerful tool to study genome-scale models of the cellular metabolism, based on finding the optimal flux distributions over the network. While the objective function is crucial for the outcome, its choice, even though motivated by evolutionary arguments, has not been directly connected to related measures. Here, we used an available multi-scale mathematical model of yeast replicative ageing, integrating cellular metabolism, nutrient sensing and damage accumulation, to systematically test the effect of commonly used objective functions on features of replicative ageing in budding yeast, such as the number of cell divisions and the corresponding time between divisions. The simulations confirmed that assuming maximal growth is essential for reaching realistic lifespans. The usage of the parsimonious solution or the additional maximisation of a growth-independent energy cost can improve lifespan predictions, explained by either increased respiratory activity using resources otherwise allocated to cellular growth or by enhancing antioxidative activity, specifically in early life. Our work provides a new perspective on choosing the objective function in FBA by connecting it to replicative ageing.


Assuntos
Longevidade , Saccharomyces cerevisiae , Ciclo Celular , Replicação do DNA , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo
3.
PLoS Comput Biol ; 18(7): e1010261, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797415

RESUMO

The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.


Assuntos
Oxigênio , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
FEMS Yeast Res ; 22(1)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35238938

RESUMO

Saccharomyces cerevisiae has a sophisticated signalling system that plays a crucial role in cellular adaptation to changing environments. The SNF1 pathway regulates energy homeostasis upon glucose derepression; hence, it plays an important role in various processes, such as metabolism, cell cycle and autophagy. To unravel its behaviour, SNF1 signalling has been extensively studied. However, the pathway components are strongly interconnected and inconstant; therefore, elucidating its dynamic behaviour based on experimental data only is challenging. To tackle this complexity, systems biology approaches have been successfully employed. This review summarizes the progress, advantages and disadvantages of the available mathematical modelling frameworks covering Boolean, dynamic kinetic, single-cell models, which have been used to study processes and phenomena ranging from crosstalks to sources of cell-to-cell variability in the context of SNF1 signalling. Based on the lessons from existing models, we further discuss how to develop a consensus dynamic mechanistic model of the entire SNF1 pathway that can provide novel insights into the dynamics of nutrient signalling.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucose/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
5.
PLoS Comput Biol ; 17(4): e1008891, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836000

RESUMO

The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.


Assuntos
Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Glucose/metabolismo , Humanos , Nitrogênio/metabolismo
6.
Front Physiol ; 9: 1964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30719010

RESUMO

Systems biology approaches provide means to study the interplay between biological processes leading to the mechanistic understanding of the properties of complex biological systems. Here, we developed a vector format rule-based Boolean logic model of the yeast S. cerevisiae cAMP-PKA, Snf1, and the Snf3-Rgt2 pathway to better understand the role of crosstalk on network robustness and function. We identified that phosphatases are the common unknown components of the network and that crosstalk from the cAMP-PKA pathway to other pathways plays a critical role in nutrient sensing events. The model was simulated with known crosstalk combinations and subsequent analysis led to the identification of characteristics and impact of pathway interconnections. Our results revealed that the interconnections between the Snf1 and Snf3-Rgt2 pathway led to increased robustness in these signaling pathways. Overall, our approach contributes to the understanding of the function and importance of crosstalk in nutrient signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA