Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cureus ; 16(5): e59534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826953

RESUMO

A total of 22 patients with cleft palate aged 8 to 12 years were selected and categorized into two groups: the first group was treated with alternate rapid maxillary expansion and constriction (Alt-RAMEC) using an expander with differential opening (EDO) and facemask, while the second group was treated using slow maxillary expansion (SME) using an EDO. Finally, the pharyngeal airway volume in the two groups was compared using cone beam computed tomography (CBCT). CBCT scans were performed before expansion and six months following the expansion. Alveolar crest level, maxillary breadth, nasal cavity width, arch width, inclination of the molar teeth, buccal and palatal alveolar bone thickness, and maxillary alveolar width were all assessed. Paired t-tests (p=0.05) were applied to compare interphase data. The two groups showed a non-significant difference in terms of nasopharyngeal volume (cm3), oropharyngeal volume (cm3), and overall pre- and post-treatment results (p>0.005). Results of comparison of pre- and post-treatment periods in the Alt-RAMEC group revealed a significantly higher cleft volume (cm3) (p=0.001). Results of comparison of pre- and post-treatment periods in the SME group revealed a substantial rise in cleft volume (cm3) (p=0.003). Results from a comparison of the cleft volume (cm3) between the two study groups pre- and post-intervention revealed a non-significant difference (p=0.200 and 0.054, respectively).

2.
ACS Appl Bio Mater ; 7(5): 3215-3226, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38695746

RESUMO

This study presents a tetra-substituted phthalonitrile derivative, namely, diethyl 2-(3,4-dicyano-2,5-bis(hexyloxy)-6-(4-(trifluoromethoxy)phenoxy)phenyl)malonate (a), cyclotetramerizing in the presence of some metal salts. The resultant hexadeca-substituted metal phthalocyanines [M= Co, Zn, InCl)] (b-d) were used for the modification of reduced graphene oxide for the first time. The effect of the phthalonitrile/metal phthalocyanines on biological features of reduced graphene oxide (rGO) was extensively examined by the investigation of antioxidant, antimicrobial, DNA cleavage, cell viability, and antibiofilm activities of nanobioagents (1-4). The results were compared with those of unmodified rGO (nanobioagent 5), as well. Modification of reduced graphene oxide with the synthesized compounds improved its antioxidant activity. The antioxidant activities of all the tested nanobioagents also enhanced as the concentration increased. The antibacterial activities of all the nanobioagents improved by applying the photodynamic therapeutic (PDT) method. All the phthalonitrile/phthalocyanine-based nanobioagents (especially phthalocyanine-based nanocomposites) exhibited DNA cleavage activities, and complete DNA fragmentation was observed for nanobioagents (1-4) at 200 mg/L. They can be used as potent antimicrobial and antimicrobial photodynamic therapy agents as well as Escherichia coli microbial cell inhibitors. As a result, the prepared nanocomposites can be considered promising candidates for biomedicine.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Grafite , Indóis , Isoindóis , Teste de Materiais , Tamanho da Partícula , Grafite/química , Grafite/farmacologia , Indóis/química , Indóis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Biofilmes/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Óxidos/química , Óxidos/farmacologia
3.
Cureus ; 16(3): e57064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38681260

RESUMO

We aim to evaluate the bond strength between resin composite and primary demineralized dentin, pretreated with silver diamine fluoride (SDF) and simultaneous SDF with potassium iodide (KI) after thermal aging. In this in vitro study, human carious-free primary molars were randomly assigned into three groups and prepared by exposing the superficial dentin. The primary dentin of each molar was demineralized. The first group (the control) received saline treatment before bond application. SDF was pretreated for the second group, whereas SDF and KI were used for the third. After that, the pretreated dentin was immediately built with resin composite bonded with a universal adhesive and kept wet for 24 hours. Then, the pretreated molars were prepared into beam specimens for microtensile bond strength (µTBS), 16 for each group, and subjected to thermal aging. Lastly, they were tested using a universal testing machine, and the resulting data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. It was found that the SDF-KI group had a significant difference with both the control and SDF groups (p < 0.05), while the control and SDF groups showed no significant differences (p = 0.310). The SDF-KI group had the highest mean value of 11.73 ± 4.39 megapascal (MPa). In contrast, the control group had the lowest mean value of 9.31 ± 3.41 MPa. Post hoc pairwise comparison results showed that SDF-KI pretreatment had a significantly higher strength value than the control and SDF groups. Pretreatment of demineralized primary dentin with SDF-KI does not negatively affect the immediate loading of resin composite. However, under the limitation of this study, KI application after SDF pretreatment is recommended to enhance the bond's durability of resin composite to demineralized dentin.

4.
Sci Total Environ ; 929: 172189, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583624

RESUMO

This study explores the incorporation of Nb2AlC and Mo3AlC2 MAX phases, known for their nano-layered structure, into polyether sulfone (PES) membranes to enhance their antifouling and permeability properties for pathogen microorganism filtration against bovine serum albumin (BSA) and Escherichia coli (E. coli). The composite membranes were characterized for their structural and morphological properties, and their performance in mitigating biofouling was evaluated. The structural characterizations have been performed for all the prepared MAX phases and corresponding composite membranes. The antioxidant ability of Nb2AlC and Mo3AlC2 MAX phases was defined by the DPPH radical scavenging assay, and the highest antioxidant ability was found to be 59.35 %, while 53.69 % scavenging potential was recorded at 100 mg/L. The percentage scavenging ability was raised with an increase in concentrations. The antimicrobial properties of MAX phases, evaluated as the minimum inhibitory concentration, were stated against several pathogen microorganisms. The tested compounds of Nb2AlC and Mo3AlC2 composites containing MAX phases exhibited excellent chemical nuclease activity, and it was determined that Nb2AlC caused double strand DNA cleavage activity while Mo3AlC2 induced the complete fragmentation of the DNA molecule. Biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was studied against Staphylococcus aureus, and Pseudomonas aeruginosa and the maximum biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was found to be 77.15 % and 69.07 % against S. aureus and also 69.74 % and 65.01 % against P. aeruginosa. Furthermore, Nb2AlC and Mo3AlC2 MAX phases demonstrated excellent E. coli growth inhibition of 100 % at 125 and 250 mg/L.


Assuntos
Incrustação Biológica , Escherichia coli , Membranas Artificiais , Polímeros , Sulfonas , Incrustação Biológica/prevenção & controle , Sulfonas/farmacologia , Sulfonas/química , Polímeros/farmacologia , Escherichia coli/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Filtração
5.
Artigo em Inglês | MEDLINE | ID: mdl-38538871

RESUMO

Chromium aluminum carbide (Cr2AlC) MAX phase and Cr2CTx (MXene-Cr) were synthesized by the pressureless sintering method and hydrothermal method, respectively. In addition to this, the free radical scavenging activities (FRSA) of MAX-Cr phase and MXene-Cr compounds were tested and compared with ascorbic acid and trolox as standard compounds. The obtained FRSA results of MAX-Cr phase and MXene-Cr were 42.82 and 59.64%, respectively, at 100 mg/L concentration. MXene-Cr showed a 66.90% inhibitory effect on α-amylase at 200 mg/L. The DNA nuclease activity of compounds was determined to be extremely satisfactory at 50, 100, and 200 mg/L concentrations. Moreover, the prepared MAX-Cr phase and MXene-Cr were investigated for antimicrobial activity against six bacterial and two fungal strains by the broth microdilution method. Compounds provided more significant inhibition against Gram-positive bacteria than Gram-negative bacteria and fungi. MAX-Cr phase and MXene-Cr almost completely inhibited microbial cell viability at a 25 mg/L concentration. Additionally, MXene-Cr showed 89.86% and 87.01% antibiofilm activity against S. aureus and P. aeruginosa, respectively, while the antibiofilm activity of the MAX-Cr phase was over 90%.

6.
J Trace Elem Med Biol ; 83: 127401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301314

RESUMO

BACKGROUND: While previous studies have provided insights into the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) on aquatic organisms, there is still a substantial amount of information lacking about the possible effects of their doped counterparts. The goal of the current work was to address this gap by examining Mytilus galloprovincialis reaction to exposure to doped and undoped nanoparticles. METHODS: Two concentrations (50 or 100 µg/L) of undoped ZnO and TiO2 NPs, as well as their gold (Au) doped counterparts, were applied on mussels for 14 days, and the effects on biomarkers activities in digestive glands and gills were assessed by spectrophotometry. RESULTS: The NPs were quasi-spherical in shape (below 100 nm), stable in seawater, and with no aggregation for both doped and undoped forms. Analytical results using inductively coupled plasma atomic emission spectroscopy indicated the uptake of NPs in mussels. Furthermore, it was found that biometal dyshomeostasis could occur following NP treatment and that doping the NPs aggravated this response. At the biochemical level, exposure to undoped NPs caused membrane damage, neurotoxic effect, and changes in the activities in the gills and digestive glands of superoxide dismutase, catalase, and glutathione-S-transferase, in a concentration and organ-dependent manner. CONCLUSION: Doping ZnO NPs and TiO2NPs with Au induced additional oxidative stress, membrane damage, and neurotoxicity in mussels.


Assuntos
Nanopartículas Metálicas , Mytilus , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Ouro/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Titânio/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
7.
Photochem Photobiol ; 100(1): 101-114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37317040

RESUMO

In the current study, we synthesized and characterized new BODIPY derivatives (1-4) having pyridine or thienyl-pyridine substituents at meso- position and 4-dibenzothienyl or benzo[b]thien-2-yl moieties at 2-,6- positions. We investigated fluorescence properties and the ability to form singlet oxygen. In addition, various biological activities of BODIPYs such as DPPH scavenging, DNA binding/cleavage ability, cell viability inhibition, antimicrobial activity, antimicrobial photodynamic therapy (aPDT) and biofilm inhibition properties were performed. BODIPY derivatives BDPY-3 (3) and BDPY-4 (4) have high fluorescence quantum yields as 0.50 and 0.61 and 1 O2 quantum yields were calculated as 0.83 for BDPY-1 (1), 0.12 for BDPY-2 (2), 0.11 for BDPY-3 and 0.23 for BDPY-4. BODIPY derivatives BDPY-2, BDPY-3 and BDPY-4 displayed 92.54 ± 5.41%, 94.20 ± 5.50%, and 95.03 ± 5.54% antioxidant ability, respectively. BODIPY compounds showed excellent DNA chemical nuclease activity. BDPY-2, BDPY-3 and BDPY-4 also exhibited 100% APDT activity against E. coli at all tested concentrations. In addition to these, they demonstrated a highly effective biofilm inhibition activity against Staphyloccous aureus and Pseudomans aeruginosa. BDPY-4 showed the most effective antioxidant and DNA cleavage activity, while BDPY-3 exhibited the most effective antimicrobial and antibiofilm activity.


Assuntos
Anti-Infecciosos , Antioxidantes , Compostos de Boro , Antioxidantes/farmacologia , Escherichia coli , Anti-Infecciosos/farmacologia , DNA , Biofilmes , Piridinas
8.
Prep Biochem Biotechnol ; 54(3): 294-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37452678

RESUMO

In this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as Geobacillus stearothermophilus strain Gecek20 and thermophilic Anoxybacillus flavithermus strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic G. stearothermophilus strain Gecek20 and thermophilic A. flavithermus strain Gecek19 were evaluated. The produced NPs were analyzed by SEM, SEM-EDX, and XRD analyses. The antioxidant abilities of new synthesized Ag-NPs from thermophilic G. stearothermophilus strain Gecek20 (T1-Ag-NPs) and new synthesized Ag-NPs from thermophilic A. flavithermus strain Gecek19 (T2-Ag-NPs) were studied by DPPH inhibition and metal chelating ability. The highest DPPH and metal chelating abilities of T1-Ag-NPs and T2-Ag-NPs at 200 mg/L concentration were 93.17 and 90.85%, and 75.80 and 83.64%, respectively. The extracellular green synthesized T1-Ag-NPs and T2-AgN-Ps showed DNA nuclease activity at all tested concentrations. Moreover, both new synthesized Ag-NPs had antimicrobial activity against the strains studied, especially on Gram positive bacteria. T1-Ag-NPs and T2-AgNPs also showed powerful Escherichia coli growth inhibition. The highest biofilm inhibition percentages of T1-Ag-NPs and T2-Ag-NPs against Pseudomonas aeruginosa and Staphylococcus aureus were 100.0%, respectively, at 500 mg/L.


Assuntos
Anoxybacillus , Geobacillus stearothermophilus , Nanopartículas Metálicas , RNA Ribossômico 16S , Prata/farmacologia , Escherichia coli
9.
Biometals ; 37(1): 115-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37651060

RESUMO

Search for new antimicrobial agents is of great significance due to the issue of antimicrobial resistance, which nowadays has become more important than many diseases. The aim of this study was to evaluate the toxicity and biological effects of a dextran-graft-polyacrylamide (D-PAA) polymer-nanocarrier with/without silver or gold nanoparticles (AgNPs/D-PAA and AuNPs/D-PAA, respectively) to analyze their potential to replace or supplement conventional antibiotic therapy. The toxicity of nanocomplexes against eukaryotic cells was assessed on primary dermal fibroblasts using scratch, micronucleus and proliferation assays. DPPH (2,2-diphenyl-1-picrylhydrazylradical) assay was used to evaluate the antioxidant capacity of D-PAA, AgNPs/D-PAA and AuNPs/D-PAA. DNA cleavage, antimicrobial and biofilm inhibition effects of nanocomplexes were investigated. Nanocomplexes were found to be of moderate toxicity against fibroblasts with no genotoxicity observed. AgNPs/D-PAA reduced motility and proliferation at lower concentrations compared with the other studied nanomaterials. AgNPs/D-PAA and AuNPs/D-PAA showed radical scavenging capacities in a dose-dependent manner. The antimicrobial activity of AgNPs/D-PAA against various bacteria was found to be much higher compared to D-PAA and AuNPs/D-PAA, especially against E. hirae, E. faecalis and S. aureus, respectively. D-PAA, AgNPs/D-PAA and AuNPs/D-PAA showed DNA-cleaving and biofilm inhibitory activity, while AgNPs/D-PAA displayed the highest anti-biofilm activity. AgNPs/D-PAA and AuNPs/D-PAA were characterized by good antimicrobial activity. According to the findings of the study, AgNPs/D-PAA and AuNPs/D-PAA can be evaluated as alternatives for the preparation of new antimicrobial agents, the fight against biofilms, sterilization and disinfection processes. Our findings confirm the versatility of nanosystems based on dextran-polyacrylamide polymers and indicate that AgNPs/D-PAA and AuNPs/D-PAA can be evaluated as alternatives for the preparation of novel antimicrobial agents.


Assuntos
Resinas Acrílicas , Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Antioxidantes/farmacologia , Ouro/farmacologia , Ouro/química , Dextranos/farmacologia , Staphylococcus aureus , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros
10.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067527

RESUMO

Fenugreek (Trigonella foenum-graecum) has a great beneficial health effect; it has been used in traditional medicine by many cultures. Likewise, the α-amylase inhibitors are potential compounds in the development of drugs for the treatment of diabetes. The beneficial health effects of fenugreek lead us to explore the chemical composition of the seeds and their antioxidant and α-amylase inhibition activities. The flavonoid extraction from fenugreek seeds was achieved with methanol through a Soxhlet apparatus. Then, the flavonoid glycosides were characterized using HPLC-DAD-ESI-MS analysis. The antioxidant capacity of fenugreek seed was measured using DPPH, FRAP, ABTS, and CUPRAC assays. Finally, the α-amylase inhibition activity was carried out using in vitro and in silico methods. The methanolic extract was found to contain high amounts of total phenolics (154.68 ± 1.50 µg GAE/mg E), flavonoids (37.69 ± 0.73 µg QE/mg E). The highest radical-scavenging ability was recorded for the methanolic extract against DPPH (IC50 = 556.6 ± 9.87 µg/mL), ABTS (IC50 = 593.62 ± 9.35 µg/mL). The ME had the best reducing power according to the CUPRAC (A 0.5 = 451.90 ± 9.07 µg/mL). The results indicate that the methanolic extracts of fenugreek seed best α-amylase inhibition activities IC50 = 653.52 ± 3.24 µg/mL. Twenty-seven flavonoids were detected, and all studied flavonoids selected have good affinity and stabilize very well in the pocket of α-amylase. The interactions between the studied flavonoids with α-amylase were investigated. The flavonoids from fenugreek seed present a good inhibitory effect against α-amylase, which is beneficial for the prevention of diabetes and its complications.


Assuntos
Diabetes Mellitus , Trigonella , Humanos , Antioxidantes/química , Trigonella/química , Flavonoides/farmacologia , Flavonoides/análise , Simulação de Acoplamento Molecular , alfa-Amilases , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Metanol/química , Sementes/química
11.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959691

RESUMO

The removal of heavy metals from wastewater has become the subject of considerable interest at present. Thus, the use of novel adsorbents that are highly efficient is of critical importance for the removal of Cr (VI) ions from aqueous media. The adsorption of Cr (VI) ions from aqueous solutions by a new adsorbent, cedar wood sawdust, and the optimization of its adsorption parameters, were investigated in this study. Cedar wood sawdust was used in its native and HNO3/NaOH chemically modified forms as new low-cost sorbents to remove Cr (VI) ions from aqueous solutions in a batch system. The adsorption conditions were analyzed via response surface methodology. The RSM results showed that the optimal adsorption conditions yielding the best response were an adsorbent mass of 2 g for native Cedar and 1.125 g for its activated form, a metal concentration of 150 mg/L for native Cedar and 250 mg/L for activated, a temperature of 50 °C, a pH of 1, and a contact time of 67.5 min. At optimum adsorption conditions, the maximum adsorption capacities and the adsorption yields were 23.64 mg/g and 84% for native Cedar and 48.31 mg/g and 99% for activated Cedar, respectively.

12.
Dalton Trans ; 52(29): 9993-10004, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37403542

RESUMO

In this study, a glycerol group substituted bis(2-pyridylamino)isoindoline (BPI-OH) ligand and its metal complexes (M = Pt, Cu and Co) were synthesized. Characterization of all new compounds was carried out using FT-IR, NMR, UV-Vis, and mass spectroscopy. Various biological activities of BPI derivatives were also tested. The antioxidant activities of BPI-OH, Pt-BPI-OH, Cu-BPI-OH, and Co-BPI-OH were 87.52 ± 4.62%, 98.05 ± 5.61%, 92.20 ± 5.12%, and 89.27 ± 4.74%, at 200 mg L-1 concentration respectively. BPI derivatives displayed perfect DNA cleavage activity and plasmid DNA was completely broken at all tested concentrations. The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of the compounds were investigated and BPI derivatives showed good APDT. E. coli cell viability was inhibited at 125 and 250 mg L-1. BPI-OH, Pt-BPI-OH, Cu-BPI-OH, and Co-BPI-OH also successfully inhibited the biofilm formation of S. aureus and P. aeruginosa. Furthermore, the antidiabetic activity of BPI derivatives was studied. This study also evaluates the binding affinities of four compounds (BPI-OH, Pt-BPI-OH, Cu-BPI-OH, and Co-BPI-OH) to various residues of DNA using hydrogen bond distance measurements and binding energies. The results show that the BPI-OH compound forms hydrogen bonds with residues in the major groove of DNA, while BPI-Pt-OH, BPI-Cu-OH, and BPI-Co-OH compounds form hydrogen bonds with residues in the minor groove. The hydrogen bond distances for each compound range from 1.75 to 2.2 Angstroms.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Glicerol , Espectroscopia de Infravermelho com Transformada de Fourier , Cobre/química , Escherichia coli , Staphylococcus aureus , Complexos de Coordenação/química , Anti-Infecciosos/química , DNA/metabolismo
13.
Appl Nanosci ; : 1-13, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37362150

RESUMO

It is known that heavy metal containing nanomaterials can easily prevent the formation of microbial cultures. The emergence of new generation epidemic diseases in the last 2 years has increased the importance of both personal and environmental hygiene. For this reason, in addition to preventing the spread of diseases, studies on alternative disinfectant substances are also carried out. In this study, the antibacterial activity of nanoflower and nanocube, which are easily synthesized and nanoparticle species containing iron, were compared. The antioxidant abilities of new synthesized NF@FeO(OH) and NC@α-Fe2O3 were tested by DPPH scavenging activity assay. The highest DPPH inhibition was achieved with NC@α-Fe2O3 as 71.30% at 200 mg/L. NF@FeO(OH) and NC@α-Fe2O3 demonstrated excellent DNA cleavage ability. The antimicrobial capabilities of NF@FeO(OH) and NC@α-Fe2O3 were analyzed with micro dilution procedure. In 500 mg/L, the antimicrobial activity was 100%. In addition to these, the biofilm inhibition of NF@FeO(OH) and NC@α-Fe2O3 were investigated against S. aureus and P. aeruginosa and it was found that they showed significant antibiofilm inhibition. It is suggested that additional studies can be continued to be developed and used as an antibacterial according to the results of the nanoparticles after various toxicological test systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s13204-023-02822-5.

14.
Chem Biodivers ; 20(7): e202300389, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37366243

RESUMO

In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile (1) and its metal phthalocyanines (2 and 3) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds (1-3), their nanoconjugates (4-6), and silver nanoparticles (7) were examined for the first time in this study. The antioxidant activities of biological candidates (1-7) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates (6). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates (1-7) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates (5 and 6) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates (1-6) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoconjugados/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
15.
Chemosphere ; 339: 139340, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37379977

RESUMO

Antimicrobial resistance to antibiotics for current bacterial infection treatments is a medical problem. 2D nanoparticles, which can be used as both antibiotic carriers and direct antibacterial agents due to their large surface areas and direct contact with the cell membrane, are important alternatives in solving this problem. This study focuses on the effects of a new generation borophene derivative obtained from MgB2 particles on the antimicrobial activity of polyethersulfone membranes. MgB2 nanosheets were created by mechanically separating magnesium diboride (MgB2) particles into layers. The samples were microstructurally characterized using SEM, HR-TEM, and XRD methods. MgB2 nanosheets were screened for various biological activities such as antioxidant, DNA nuclease, antimicrobial, microbial cell viability inhibition, and antibiofilm activities. The antioxidant activity of nanosheets was 75.24 ± 4.15% at 200 mg/L. Plasmid DNA was entirely degraded at 125 and 250 mg/L nanosheet concentrations. MgB2 nanosheets exhibited a potential antimicrobial effect against tested strains. The cell viability inhibitory effect of the MgB2 nanosheets was 99.7 ± 5.78%, 99.89 ± 6.02%, and 100 ± 5.84% at 12.5 mg/L, 25 mg/L, and 50 mg/L, respectively. The antibiofilm activity of MgB2 nanosheets against S. aureus and P. aeruginosa was observed to be satisfactory. Furthermore, a polyethersulfone (PES) membrane was prepared by blending MgB2 nanosheets from 0.5 wt to 2.0 wt %. Pristine PES membrane also has shown the lowest steady-state fluxes at 30.1 ± 2.1 and 56.6 L/m2h for BSA and E. coli, respectively. With the increase of MgB2 nanosheets amount from 0.5 to 2.0 wt%, steady-state fluxes increased from 32.3 ± 2.5 to 42.0 ± 1.0 and from 15.6 ± 0.7 to 24.1 ± 0.8 L/m2h, respectively for BSA and E. coli. E. coli elimination performance of PES membrane coated with MgB2 nanosheets at different rates and the membrane filtration procedure was obtained from 96% to 100%. The results depicted that BSA and E. coli rejection efficiencies of MgB2 nanosheets blended PES membranes increased when compared to pristine PES membranes.


Assuntos
Anti-Infecciosos , Boro , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa
16.
Water Sci Technol ; 87(7): 1616-1629, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051786

RESUMO

Antibacterial membranes have attracted researchers' interest in recent years as a possible approach for dealing with biofouling on the membrane surface. This research aims to see if blending AZ63 Mg alloy into a polyethersulphone (PES) membrane can improve antifouling and separation properties. The composite membranes' pure water flux continued to increase from pristine PES to PES/AZ63 2.00 wt%. The results showed that PES/AZ63 2.00 wt% membrane supplied the highest permeate flux of E. coli. The steady-state fluxes of AZ63 composite membranes were 113.24, 104.38 and 44.79 L/m2h for PES/AZ63 2.00 wt%, 1.00 wt%, and 0.50 wt%, respectively. The enhanced biological activity of AZ63 was studied based on antioxidant activity, DNA cleavage, antimicrobial, anti-biofilm, bacterial viability inhibition and photodynamic antimicrobial therapy studies. The maximum DPPH scavenging activity was determined as 81.25% with AZ63. AZ63 indicated good chemical nuclease activity and also showed moderate antimicrobial activity against studied strains. The highest biofilm inhibition of AZ63 was 83.25% and 71.63% towards P. aeruginosa and S. aureus, respectively. The cell viability inhibition activity of AZ63 was found as 96.34% against E. coli. The photodynamic antimicrobial therapy results displayed that AZ63 demonstrated 100% bacterial inhibition when using E. coli.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Escherichia coli , Staphylococcus aureus , Membranas Artificiais , Antibacterianos/farmacologia , Antibacterianos/química
17.
Chem Biodivers ; 20(4): e202201167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912724

RESUMO

In this study, three new axially disubstituted silicon phthalocyanines (SiPc1-3) and their quaternized phthalocyanine derivatives (QSiPc1-3) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds (QSiPc1-3) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1-3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.


Assuntos
Anti-Infecciosos , Antineoplásicos , Compostos de Organossilício , Staphylococcus aureus , Humanos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , DNA/química , Escherichia coli/efeitos dos fármacos , Ligantes , Staphylococcus aureus/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia
18.
Food Chem ; 413: 135608, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745948

RESUMO

Due to increasing industrialization and overpopulation, the amount of toxic metals is increasing in the environment, including air, soil, water, and food. Solid phase extraction is an efficient and ideal technique to preconcentrate the toxic metals before their measurements by analytical instruments. Russula brevipes was immobilized on γ-Fe2O3 magnetic nanoparticles and employed as a SPE sorbent to preconcentrate the trace level of Pb(II), Mn(II), and Co(II). To investigate the extraction conditions, significant experimental parameters were examined in details. LODs were calculated as 0.022, 0.015, and 0.024 ng mL-1 for Pb(II), Mn(II), and Co(II), respectively. The biosorption capacities of R. brevipes immobilized γ-Fe2O3 were calculated as 43.1 mg g-1 for Pb(II), 54.9 mg g-1 for Mn(II), and 49.7 mg g-1 for Co(II). Pb(II), Mn(II), and Co(II) in food samples at trace levels were preconcentrated by applying the developed method.


Assuntos
Chumbo , Nanopartículas , Água
19.
Dalton Trans ; 52(9): 2672-2683, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36745464

RESUMO

In this study, new unsymmetrical meso-tetraaryl AB3-type porphyrins 1 and 2 were successfully synthesized by the reaction of p-bromobenzaldehyde and p-hydroxybenzaldehyde with pyrrole in propionic acid. AB3-type porphyrin building blocks with hydroxyl functionality (1 and 2) were further used to generate both covalently linked metal free and Zn(II) porphyrins 3-6 having piperidine and morpholine heterocyclic units. These novel compounds were characterized by using 1H NMR, 13C NMR, FT-IR and MALDI-TOF spectrophotometry. The photophysical and photochemical properties of compounds 1-6 were investigated by employing UV-vis absorption and fluorescence emission spectroscopy in tetrahydrofuran (THF). From the view of biological properties, the antioxidant capacities of porphyrins were determined by using DPPH radical scavenging activity and 2 was determined as the most potent porphyrin analog with a value of 98.42% at 200 mg L-1. All the targeted compounds displayed significant DNA nuclease activity. In addition, the antimicrobial potential of compounds 1-6 was also investigated by a micro-dilution process and 2 was found to be the most effective candidate against the tested microbial strains. The newly synthesized porphyrins also showed 100% microbial cell viability inhibition against E. coli at all examined concentrations. In terms of biofilm inhibition activity, the best results for the maximum photodynamic antimicrobial biofilm inhibition of S. aureus and P. aeruginosa were obtained by compound 2 with the values of 99.75% and 93.39%, respectively.


Assuntos
Porfirinas , Porfirinas/farmacologia , Porfirinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Staphylococcus aureus , Piperidinas , Morfolinas
20.
J Food Sci Technol ; 60(1): 73-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618055

RESUMO

In this study, antioxidant (DPPH and metal chelating), DNA cleavage, biofilm, and antimicrobial properties of extracted phenol from the walnut green husk (WGH) and its different concentrate and permeate samples were evaluated. For maximum phenolic compound extraction from the WGH first, the effects of solvent type (deionized water, methanol, n-hexane, acetone, and ethanol), solvent temperature (25-75 °C), and extraction time (0.5-24 h) were optimized. Then to concentrate phenolic compounds a pressure-driven membrane process was used with four different membrane types. The phenol contents of the concentrate samples were found to be microfiltration (MF) concentrate 4400 mg/L, ultrafiltration (UF) concentrate 4175 mg/L, nanofiltration (NF) concentrate 8155 mg/L, and reverse osmosis (RO) concentrate 8100 mg/L. LC-MSMS was used to determine the quantification of phenolic compounds in permeate and concentrate streams. In addition, all of the concentrate samples with high phenol content showed a high antioxidant activity as 100% with MF concentrate, UF concentrate, NF concentrated and RO concentrated. Likewise, concentrate samples were found to have very high antibiofilm activity as 82.86% for NF concentrate againts S. aureus, 85.80% for NF concentrate against P. aureginosa, 80.95% for RO concentrate against S. aureus, and 83.61% for RO-concentrate against P. aureginosa. When the antimicrobial activity of the extracted phenol from WGH and its different concentrate and permeate samples were evaluated by micro dilution and disk diffusion methods, it was found that the ability of the concentrate samples to inhibit bacterial growth was much higher than permeate ones. In addition, extracted phenol from WGH and its different concentrate and permeate samples showed significant DNA nuclease activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05588-w.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA