Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1338458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469142

RESUMO

Introduction: The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods: We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results: In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion: We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.


Assuntos
Aterosclerose , Hiperlipidemias , Masculino , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Incidência , Camundongos Endogâmicos C57BL , Hiperlipidemias/patologia , Aterosclerose/metabolismo , Colesterol , Circulação Cerebrovascular/fisiologia
2.
Br J Nutr ; 127(5): 641-652, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33823947

RESUMO

Calorie restriction (CR) has been shown to be one of the most effective methods in alleviating the effects of ageing and age-related diseases. Although the protective effects of CR have been reported, the exact molecular mechanism still needs to be clarified. This study aims to determine differentially expressed (DE) miRNAs and altered gene pathways due to long-term chronic (CCR) and intermittent (ICR) CR in the brain of mice to understand the preventive roles of miRNAs resulting from long-term CR. Ten weeks old mice were enrolled into three different dietary groups; ad libitum, CCR or ICR, and fed until 82 weeks of age. miRNAs were analysed using GeneChip 4.1 microarray and the target of DE miRNAs was determined using miRNA target databases. Out of a total 3,163 analysed miRNAs, 55 of them were differentially expressed either by different CR protocols or by ageing. Brain samples from the CCR group had increased expression levels of mmu-miR-713 while decreasing expression levels of mmu-miR-184-3p and mmu-miR-351-5p compared to the other dietary groups. Also, current results indicated that CCR showed better preventive effects than that of ICR. Thus, CCR may perform its protective effects by modulating these specific miRNAs since they are shown to play roles in neurogenesis, chromatin and histone regulation. In conclusion, these three miRNAs could be potential targets for neurodegenerative and ageing-related diseases and may play important roles in the protective effects of CR in the brain.


Assuntos
Restrição Calórica , MicroRNAs , Envelhecimento/fisiologia , Animais , Encéfalo/metabolismo , Restrição Calórica/métodos , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675436

RESUMO

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteases 3C de Coronavírus/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microvasos/metabolismo , SARS-CoV-2/metabolismo , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Chlorocebus aethiops , Proteases 3C de Coronavírus/genética , Cricetinae , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microvasos/patologia , SARS-CoV-2/genética , Células Vero
4.
Appl Physiol Nutr Metab ; 46(8): 866-876, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33493087

RESUMO

Calorie restriction (CR) is suggested to prevent the development of mammary tumors (MTs); however, the mechanism remains to be clarified. We aimed to determine the microRNA (miRNA) profile in mice applied to 2 different CR protocols; chronic (CCR) and intermittent (ICR) and follow the MT development. In addition, the roles of miRNAs involved in adiponectin and/or leptin signaling pathways were investigated. Mice were divided into 3 groups: ad-libitum (AL), CCR, or ICR, which comprised 3 weeks of AL feeding followed by 1 week of 60% CR in a cyclic manner. Blood and tissue collection were performed at weeks 10, 17/18, 49/50 and 81/82. Long-term CCR provided better protection compared with ICR for MT development with a delay in the MT occurrence. Adiponectin expression in mammary fat pad were significantly higher in CCR group compared with AL. Using GeneChip Array, 250 of 3195 miRNAs were differentially expressed among the dietary groups. Thirteen of 250 miRNAs were related to adiponectin and/or leptin signaling genes. Results were verified by reverse transcription polymerase chain reaction. Specifically, miR-326-3p, miR-500-3p and miR-129-5p, which are related to adiponectin and/or leptin signaling, may play important roles in the preventive effects of CR in MT development and in ageing. Thus, these miRNAs might be putative biomarkers to target for diagnostic and treatment purposes. Novelty: Type of CR and micro RNA interaction is related to ageing. miR-326-3p, miR-500-3p and miR-129-5p expression levels were differentially expressed in MT development and in ageing. The genes associated with adiponectin and/or leptin signaling pathways are regulated by certain miRNAs in the protective effects of CR.


Assuntos
Adiponectina/metabolismo , Neoplasias da Mama/metabolismo , Restrição Calórica/métodos , Leptina/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Exp Clin Med (Samsun) ; 37(4): 119-125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408552

RESUMO

Obesity is associated with increased risk of breast cancer. Leptin is a well-known factor involved in obesity and its serum levels are increased in breast cancer. Hyperglycemia is another significant risk factor for breast cancer. Consistently, high glucose induces proliferation and invasion of breast cancer cells and in-vivo calorie restriction reduce tumorigenesis in rodent models. The aim of this study was to investigate the effect of leptin on the viability and mode of cell death in breast cancer cells incubated in different glucose concentrations to represent caloric restriction. For this purpose, MCF-7 and T47D breast cancer cells incubated in different glucose concentrations for a total of 72 hours were treated with or without leptin either for one hour or 24 hours and the ratio of apoptotic, necrotic and alive cells were analyzed by flow cytometry. Our data revealed that glucose incubation significantly decreased apoptosis and necrosis, while increasing viability in both cell lines in a dose dependent manner. One-hour leptin treatment significantly decreased viability, and increased apoptosis but did not significantly affect necrosis in T47D cells incubated in 2.5 mM glucose. In MCF-7 cells, one-hour leptin incubation significantly increased necrosis but its effects on apoptosis and viability were not significant. In conclusion, although glucose induces cell death by apoptosis and necrosis in T47D and MCF-7 cells respectively in a dose dependent manner, the overallviability is still increased in both cell lines. One-hour leptin treatment reverses the effect of low glucose incubation on apoptosis of T47D and necrosis of MCF-7 cells. Moreover, the effect of one-hour leptin treatment on apoptosis or necrosis is significantly higher than that of 24-hour leptin treatment.

6.
Ann Med Res ; 26(12): 2966-2971, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32566928

RESUMO

AIM: Leptin activates multiple intracellular signaling pathways, including JAK/STAT, by binding to its receptor. Leptin is also an important regulator of glucose homeostasis. Although both glucose and leptin increase breast cancer cell proliferation in vitro, whether the enhancing effect of glucose on the proliferation of breast cancer cells is mediated by the leptin signaling pathway is not known. The aim of this study was to investigate the effect of different glucose concentrations on the leptin signaling pathway in MCF-7 and T47D breast cancer cells. MATERIAL AND METHODS: MCF-7 and T47D cell proliferation in different glucose concentrations (2.5 mM, 5 mM, 25 mM, or 50 mM) were assayed using CCK-8 assay. Leptin, leptin receptors (ObR, ObRb) as well as STAT3 mRNA and protein levels in both cell lines in different glucose concentrations were examined by RT-PCR and western blot, respectively. RESULTS: Incubation in 2.5 mM, 5 mM, 25 mM, or 50 mM glucose for 72h significantly increased the proliferation of both MCF-7 and T47D cells compared to 0 mM glucose incubated cells (P<0.001). mRNA levels of leptin, ObR, ObRb or STAT3 in 2.5 mM, 5 mM, 25 mM, or 50 mM glucose incubated cells were not significantly different in both cell lines compared to 0 mM (p>0.05). However, ObR protein levels in MCF-7 cells incubated in 25 mM glucose was significantly lower compared to 0 mM glucose by western blot (p<0.05). CONCLUSION: Our data suggest that the enhancing effect of glucose on breast cancer cell proliferation is not mediated by the JAK/STAT pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA