Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Opt Express ; 11(8): 4244-4254, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923039

RESUMO

Photo-magnetic imaging (PMI) is an emerging optical imaging modality that showed great performance on providing absorption maps with high resolution and quantitative accuracy. As a multi-modality technology, PMI warms up the imaged object using a near infrared laser while temperature variation is measured using magnetic resonance imaging. By probing tissue at multiple wavelengths, concentration of the main tissue chromophores such as oxy- and deoxy-hemoglobin, lipid, and water are obtained then used to derive functional parameters such as total hemoglobin concentration and relative oxygen saturation. In this paper, we present a multi-wavelength PMI system that was custom-built to host five different laser wavelengths. After recovering the high-resolution absorption maps, a least-squared minimization process was used to resolve the different chromophore concentration. The performance of the system was experimentally tested on a phantom with two different dyes. Their concentrations were successfully assessed with high spatial resolution and average accuracy of nearly 80%.

2.
Opt Express ; 26(4): 4906-4919, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475334

RESUMO

This study presents a simulation-based analysis on the excitation of microcantilever in air using pulsed-laser-induced photoacoustic waves. A model was designed and coded to investigate the effects of consecutive photoacoustic waves, arising from a spherical light absorber illuminated by short laser pulses. The consecutiveness of the waves were adjusted with respect to the pulse repetition frequency of the laser to examine their cumulative effects on the oscillation of microcantilever. Using this approach, oscillation characteristics of two rectangular cantilevers with different resonant frequencies (16.9 kHz and 505.7 kHz) were investigated in the presence of the random oscillations. The results show that the effective responses of the microcantilevers to the consecutive photoacoustic waves provide steady-state oscillations, when the pulse repetition frequency matches to the fundamental resonant frequency or its lower harmonics. Another major finding is that being driven by the same photoacoustic pressure value, the high frequency cantilever tend to oscillate at higher amplitudes. Some of the issues emerging from these findings may find application area in atomic force microscopy actuation and photoacoustic signal detection.

3.
Opt Lett ; 42(20): 4171-4174, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29028040

RESUMO

We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.


Assuntos
Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Termometria/métodos , Feminino , Humanos , Imagens de Fantasmas , Fótons
4.
Biomed Opt Express ; 7(10): 3899-3904, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867701

RESUMO

We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster. The new algorithm is validated using real MRT measured temperature maps. In fact, it accelerates the reconstruction process by more than 250 times compared to a single iteration of the FEM-based algorithm, which opens the possibility for the real-time PMI.

5.
Opt Express ; 22(16): 19758-73, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25321058

RESUMO

Bioluminescence imaging has been a popular tool in small animal imaging. During the last decade, the efforts have focused on the development of tomographic systems. However, due to the difficulties in the nature of inverse source problem, multi-modal systems have been the center of attention for the last couple of years. These systems provide complementary information such that the difficulties of the inverse source problem could be overcome using the a priori information obtained. Motivated by these advances in multi-modal systems, this work presents a novel analytical reconstruction of the bioluminescent source. It is shown that if source strength is known a priori then source position could be calculated or vice versa, if source location is known a priori, source strength could be calculated as well as the photon fluence rate. The determination of the source location can be achieved by another imaging system such as X-ray computed tomography. Therefore, in bioluminescence tomography together with an imaging system can be utilized as a multi-modal system. In this work, conventional finite element based simulations are also performed and the numerical results are compared with the analytical ones. It turns out to be that the analytical results are in a good accordance with the numerical results.


Assuntos
Medições Luminescentes/métodos , Simulação por Computador , Difusão , Análise de Elementos Finitos , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA