Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(6): e2300458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389157

RESUMO

SCOPE: Processing of whey protein concentrate (WPC) for infant formulas may induce protein modifications with severe consequences for preterm newborn development. The study investigates how conventional WPC and a gently processed skim milk-derived WPC (SPC) affect gut and immune development after birth. METHODS AND RESULTS: Newborn, preterm pigs used as a model of preterm infants were fed formula containing WPC, SPC, extra heat-treated SPC (HT-SPC), or stored HT-SPC (HTS-SPC) for 5 days. SPC contained no protein aggregates and more native lactoferrin, and despite higher Maillard reaction product (MRP) formation, the clinical response and most gut and immune parameters are similar to WPC pigs. SPC feeding negatively impacts intestinal MRP accumulation, mucosa, and bacterial diversity. In contrast, circulating T-cells are decreased and oxidative stress- and inflammation-related genes are upregulated in WPC pigs. Protein aggregation and MRP formation increase in HTS-SPC, leading to reduced antibacterial activity, lactase/maltase ratio, circulating neutrophils, and cytotoxic T-cells besides increased gut MRP accumulation and expression of TNFAIP3. CONCLUSION: The gently processed SPC has more native protein, but higher MRP levels than WPC, resulting in similar tolerability but subclinical adverse gut effects in preterm pigs. Additional heat treatment and storage further induce MRP formation, gut inflammation, and intestinal mucosal damage.


Assuntos
Fórmulas Infantis , Leite , Humanos , Recém-Nascido , Lactente , Animais , Suínos , Proteínas do Soro do Leite , Intestinos/fisiologia , Recém-Nascido Prematuro , Inflamação
2.
Front Neurosci ; 17: 1205819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404461

RESUMO

Introduction: Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Methods: Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. Results: The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus. Conclusion: Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.

3.
Mol Nutr Food Res ; 66(20): e2200132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36052940

RESUMO

SCOPE: Ready-to-feed liquid infant formula is increasingly used for preterm infants when human milk is unavailable. These formulas are sterilized by ultra-high temperature treatment, but heating and storage may reduce bioactivity and increase formation of Maillard reaction products with potential negative consequences for immature newborns. METHODS AND RESULTS: Using preterm pigs as a model for sensitive newborn infants, the study tests the intestinal responses of feeding experimental liquid formula within 5 days. A pasteurized formula (PAST) with the same nutrient composition but less protein modifications serves as control to ultra-high temperature-treated formula without (UHT) and with prolonged storage (SUHT). Relative to PAST, UHT contains lower levels of lactoferrin and IgG. Additional storage (40 °C, 60 days, SUHT) reduces antimicrobial capacity and increases non-reducible protein aggregates and Maillard reaction products (up to 13-fold). Pigs fed SUHT have more diarrhea and show signs of intestinal inflammation (necrotizing enterocolitis) compared with pigs fed PAST and UHT. These clinical effects are accompanied by accumulation of Maillard reaction products, protein cross-links, and inflammatory responses in the gut. CONCLUSION: The results demonstrate that feeding UHT infant formulas, particularly after prolonged storage, adversely affects gut maturation and function in preterm pigs used as a model of preterm infants.


Assuntos
Fórmulas Infantis , Intestinos , Humanos , Recém-Nascido , Lactente , Suínos , Animais , Animais Recém-Nascidos , Intestinos/fisiologia , Produtos Finais de Glicação Avançada , Agregados Proteicos , Lactoferrina , Temperatura , Recém-Nascido Prematuro , Inflamação , Imunoglobulina G
4.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503431

RESUMO

Preterm infants are susceptible to bloodstream infection by coagulase-negative staphylococci (CONS) that can lead to sepsis. Glucose-rich parenteral nutrition is commonly used to support the infants' growth and energy expenditure but may exceed endogenous regulation during infection, causing dysregulated immune response and clinical deterioration. Using a preterm piglet model of neonatal CONS sepsis induced by Staphylococcus epidermidis (S. epidermidis) infection, we demonstrate the delicate interplay between immunity and glucose metabolism to regulate the host infection response. Circulating glucose levels, glycolysis, and inflammatory response to infection are closely connected across the states of tolerance, resistance, and immunoparalysis. Furthermore, high parenteral glucose provision during infection induces hyperglycemia, elevated glycolysis, and inflammation, leading to metabolic acidosis and sepsis, whereas glucose-restricted individuals are clinically unaffected with increased gluconeogenesis to maintain moderate hypoglycemia. Finally, standard glucose supply maintaining normoglycemia or pharmacological glycolysis inhibition enhances bacterial clearance and dampens inflammation but fails to prevent sepsis. Our results uncover how blood glucose and glycolysis control circulating immune responses, in turn determining the clinical fate of preterm infants infected with CONS. Our findings suggest further refinements of the current practice of parenteral glucose supply for preterm infants during infection.


Assuntos
Sepse , Infecções Estafilocócicas , Animais , Glucose , Glicólise , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Sepse/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Suínos
5.
Nutrients ; 13(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34444835

RESUMO

Deficient levels of milk osteopontin (OPN) in infant formula may partly account for developmental differences between infants fed formula or maternal milk. We hypothesized that a milk diet supplemented with bovine milk OPN improves gut, immunity and brain development and tested this in a preterm pig model. Preterm pigs delivered by cesarean section (90% gestation) were fed raw bovine milk (CON, n = 19) or the same diet supplemented with a physiologically relevant dose of OPN (46 mg/(kg·d), n = 16). Endpoints related to clinical outcomes, systemic immunity and neurocognitive development were assessed during the study and gut tissues were collected at Day 19. Growth pattern, early motor development and most systemic immune parameters were similar between OPN and CON pigs. The OPN pigs had higher villus-to-crypt ratios than CON pigs and higher monocyte and lymphocyte counts on Day 8. Gut digestive and absorptive functions and cognitive performance (T-maze test) were similar between OPN and CON pigs. In conclusion, dietary supplementation with OPN above basal bovine milk levels induced minor improvements in gut structure and systemic immunity without any effects on cognitive performance. The minimal levels of OPN in infant formula to secure optimal adaptation in the immediate neonatal period remain to be determined.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Trato Gastrointestinal/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Leite/química , Osteopontina/farmacologia , Animais , Peso Corporal , Bovinos , Cesárea , Cognição , Dieta , Suplementos Nutricionais , Feminino , Alimentos Formulados , Mucosa Intestinal/efeitos dos fármacos , Linfócitos , Gravidez , Suínos
6.
Nutrients ; 13(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668360

RESUMO

Breastfed infants have higher intestinal lipid absorption and neurodevelopmental outcomes compared to formula-fed infants, which may relate to a different surface layer structure of fat globules in infant formula. This study investigated if dairy-derived emulsifiers increased lipid absorption and neurodevelopment relative to soy lecithin in newborn preterm piglets. Piglets received a formula diet containing soy lecithin (SL) or whey protein concentrate enriched in extracellular vesicles (WPC-A-EV) or phospholipids (WPC-PL) for 19 days. Both WPC-A-EV and WPC-PL emulsions, but not the intact diets, increased in vitro lipolysis compared to SL. The main differences of plasma lipidomics analysis were increased levels of some sphingolipids, and lipid molecules with odd-chain (17:1, 19:1, 19:3) as well as mono- and polyunsaturated fatty acyl chains (16:1, 20:1, 20:3) in the WPC-A-EV and WPC-PL groups and increased 18:2 fatty acyls in the SL group. Indirect monitoring of intestinal triacylglycerol absorption showed no differences between groups. Diffusor tensor imaging measurements of mean diffusivity in the hippocampus were lower for WPC-A-EV and WPC-PL groups compared to SL indicating improved hippocampal maturation. No differences in hippocampal lipid composition or short-term memory were observed between groups. In conclusion, emulsification of fat globules in infant formula with dairy-derived emulsifiers altered the plasma lipid profile and hippocampal tissue diffusivity but had limited effects on other absorptive and learning abilities relative to SL in preterm piglets.


Assuntos
Emulsificantes/farmacologia , Alimentos Formulados , Lecitinas/farmacologia , Fosfolipídeos/farmacologia , Proteínas do Soro do Leite/farmacologia , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Lipidômica , Lipídeos/sangue , Lipólise/efeitos dos fármacos , Glycine max/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA