Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 132: 110860, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059258

RESUMO

Five different subunits of the human serotonin 3 (5-hydroxytrptamine 3; 5-HT3) receptor exist and these are present in both central and peripheral systems. Different subunits alter the efficacy of 5-HT3 receptor antagonists used to treat diarrhoea predominant-irritable bowel syndrome, chemotherapy induced nausea and vomiting and depression. Cell surface arrangement of 5-HT3 receptor complexes and the contribution of C, D and E subunits to receptor function is poorly understood. Here, we examine interactions of A and C subunits using 5-HT3 receptor subunits containing fluorescent protein inserts between the 3rd and 4th transmembrane spanning region. HEK293T cells that do not normally express 5-HT3 receptor subunits, were transiently transfected with A or C or both subunits. Patch clamp experiments show that cells transfected with either fluorescent protein tagged A or A and C subunits generate whole cell currents in response to 5-HT. These findings correlate with the apparent distribution of fluorescent protein tagged A and C subunits at or near cell surfaces detected using TIRF microscopy. In co-transfected cells, the A and C subunits are associated forming AC heteromer complexes at or near the cell surface and a proportion can also form A or C homomers. In conclusion, it is likely that both A homomers and AC heteromers contribute to whole cell currents in response to 5-HT with minimal contribution from C homomers.


Assuntos
Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Transfecção
2.
J Pharmacol Exp Ther ; 367(2): 335-347, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30104322

RESUMO

Renal podocyte survival depends upon the dynamic regulation of a complex cell architecture that links the glomerular basement membrane to integrins, ion channels, and receptors. Alport syndrome is a heritable chronic kidney disease where mutations in α3, α4, or α5 collagen genes promote podocyte death. In rodent models of renal failure, activation of the calcium-sensing receptor (CaSR) can protect podocytes from stress-related death. In this study, we assessed CaSR function in podocyte-like cells derived from induced-pluripotent stem cells from two patients with Alport Syndrome (AS1 & AS2) and a renal disease free individual [normal human mesangial cell (NHMC)], as well as a human immortalized podocyte-like (HIP) cell line. Extracellular calcium elicited concentration-dependent elevations of intracellular calcium in all podocyte-like cells. NHMC and HIP, but not AS1 or AS2 podocyte-like cells, also showed acute reductions in intracellular calcium prior to elevation. In NHMC podocyte-like cells this acute reduction was blocked by the large-conductance potassium channel (KCNMA1) inhibitors iberiotoxin (10 nM) and tetraethylammonium (5 mM), as well as the focal adhesion kinase inhibitor PF562271 (N-methyl-N-(3-((2-(2-oxo-2,3-dihydro-1H-indol-5-ylamino)-5-trifluoromethyl-pyrimidin-4-ylamino)-methyl)-pyridin-2-yl)-methanesulfonamide, 10 nM). Quantitative polymerase chain reaction (qPCR) and immunolabeling showed the presence of KCNMA1 transcript and protein in all podocyte-like cells tested. Cultivation of AS1 podocytes on decellularized plates of NHMC podocyte-like cells partially restored acute reductions in intracellular calcium in response to extracellular calcium. We conclude that the AS patient-derived podocyte-like cells used in this study showed dysfunctional integrin signaling and potassium channel function, which may contribute to podocyte death seen in Alport syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Canais de Potássio/metabolismo , Adolescente , Cálcio/metabolismo , Linhagem Celular , Colágeno Tipo IV/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Membrana Basal Glomerular/metabolismo , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA