Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Pharm Bull ; 14(1): 105-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585461

RESUMO

Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.

2.
Front Pharmacol ; 14: 1053680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959856

RESUMO

Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aß plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].

3.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770715

RESUMO

Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.


Assuntos
Doenças Cardiovasculares , NADPH Oxidases , Humanos , NADPH Oxidases/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Oxirredutases/metabolismo , Estresse Oxidativo , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
4.
Malays J Med Sci ; 29(2): 8-17, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35528818

RESUMO

In the vascular wall, defence against pathogenic damage requires a group of monocytes, the endothelium, dendritic cells, macrophages and a subsequent involvement of pattern recognition receptors anticipating damage-associated molecular patterns (DAMPs) to initiate an innate immune response. The endothelium plays a crucial role in regulating the duration, location and extent of the inflammatory cascade to ensure a definitive immune defence. Molecular changes in the expression of chemokines and cell adhesion molecules ensure protective responses against infection and injury. The multiprotein oligomer complex nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome plays a key role in the activation of inflammatory processes in response to DAMPs and pattern-associated molecular patterns. As a result of NLRP3 inflammasome activation, caspase-1 is activated and interleukin-1ß (IL-1ß) is produced. Caspase-1 is the main mediator of inflammatory feedback to tissue injury, and it is engaged both in the initiation of the inflammatory response and in the induction of cell death. NLRP3 inflammasome promotes further inflammatory responses and pyroptosis in the vascular endothelium; thus, its optimum regulation is crucial in cardiovascular homeostasis. This review outlines our current perception of the role of NLRP3 in vascular endothelial cells.

5.
Curr Neuropharmacol ; 20(8): 1498-1518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923947

RESUMO

Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and their severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano-sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material's bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicinebased approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Nanopartículas , Idoso , Doença de Alzheimer/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanopartículas/uso terapêutico
6.
Malays J Med Sci ; 29(6): 6-14, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36818899

RESUMO

During the third week of human pregnancy, an embryo transforms from two germinal disc layers of hypoblast and epiblast to three germinal layers of endoderm, mesoderm and ectoderm. Gastrulation is a complex process that includes cellular mobility, morphogenesis and cell signalling, as well as chemical morphogenic gradients, transcription factors and differential gene expression. During gastrulation, many signalling channels coordinate individual cell actions in precise time and location. These channels control cell proliferation, shape, fate and migration to the correct sites. Subsequently, the anteroposterior (AP), dorsoventral (DV) and left-right (LR) body axes are formed before and during gastrulation via these signalling regulation signals. Hence, the anomalies in gastrulation caused by insults to certain molecular pathways manifest as a wide range of body axes-related disorders. This article outlines the formation of body axes during gastrulation and the anomalies as well as the clinical implications.

7.
Jt Dis Relat Surg ; 32(3): 775-778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34842113

RESUMO

A 43-year-old male patient with underlying diabetes mellitus presented with lower abdominal pain radiating to left thigh. He was hemodynamically stable, but appeared lethargic. Both iliac fossae were tender, and crepitus appreciated along the anteromedial aspect of the left thigh. The patient initially responded well to treatment and was discharged; however, he was re-admitted several months later due to recurrent collection showing the growth of Klebsiella pneumoniae in the culture and succumbed to sepsis due to deep-seated intramuscular abscess and lung empyema. In conclusion, psoas abscess is a condition that can mimic various pathologies related to the lower abdomen and, therefore, clinicians should always have a high index of suspicion to prevent a missed diagnosis. Early detection may yield good outcomes, if managed with adequate surgical drainage and appropriate antibiotics.


Assuntos
Abscesso do Psoas , Adulto , Antibacterianos/uso terapêutico , Humanos , Klebsiella pneumoniae , Masculino , Músculo Esquelético , Abscesso do Psoas/tratamento farmacológico , Coxa da Perna
8.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443563

RESUMO

Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.


Assuntos
Acetofenonas/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Acetofenonas/uso terapêutico , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Humanos
9.
Front Pharmacol ; 10: 1295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749703

RESUMO

Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.

10.
EXCLI J ; 14: 179-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417358

RESUMO

Diabetes mellitus is one of the risk factors in the development of vascular complications. Decreased nitric oxide (NO) production and increased lipid peroxidation in diabetes mellitus are the dominant exaggerating factors. Mormodica charantia (MC) was proven to be useful in improving diabetes mellitus and its complications. In the present study, a total of 40 male Sprague-Dawley rats were used. Diabetes was induced by a single dose (50 mg/kg) of streptozotocin (STZ), intramuscularly. Following 4 weeks of STZ induction, the animals were equally divided into five groups (n = 8); Control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC) and diabetic group treated with metformin 150 g/kg (DM-Met). Oral administration of the MC fruit extract (1.5 g/kg) was continued for 28 days. DM-MC group showed a significant decrease (P < 0.05) in blood pressure, total cholesterol and triglyceride levels compared to the DM-Ctrl group. Aortic tissue NO level was significantly increased and malondialdehyde level was decreased in the DM-MC group. Immunohistochemical staining showed an increase in eNOS expression in the endothelial lining of the DM-MC group. Similarly, morphological deterioration of the aortic tissues was reverted to normal. In summary, treatment with the MC fruit extract exerted the significant vasculoprotective effect in the type 1 diabetic rat model.

11.
Oxid Med Cell Longev ; 2014: 429060, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25371774

RESUMO

In diabetes mellitus, cardiac fibrosis is characterized by increase in the deposition of collagen fibers. The present study aimed to observe the effect of Momordica charantia (MC) fruit extract on hyperglycaemia-induced cardiac fibrosis. Diabetes was induced in the male Sprague-Dawley rats with a single intravenous injection of streptozotocin (STZ). Following 4 weeks of STZ induction, the rats were subdivided (n = 6) into control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC), and diabetic group treated with 150 mg/kg of metformin (DM-Met). Administration of MC fruit extract (1.5 g/kg body weight) in diabetic rats for 28 days showed significant increase in the body weight and decrease in the fasting blood glucose level. Significant increase in cardiac tissues superoxide dismutase (SOD), glutathione contents (GSH), and catalase (CAT) was observed following MC treatment. Hydroxyproline content was significantly reduced and associated morphological damages reverted to normal. The decreased expression of type III and type IV collagens was observed under immunohistochemical staining. It is concluded that MC fruit extract possesses antihyperglycemic, antioxidative, and cardioprotective properties which may be beneficial in the treatment of diabetic cardiac fibrosis.


Assuntos
Diabetes Mellitus Experimental/patologia , Fibrose Endomiocárdica/prevenção & controle , Frutas/química , Hiperglicemia/tratamento farmacológico , Momordica charantia/química , Extratos Vegetais/farmacologia , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Fibrose Endomiocárdica/sangue , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA