Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(11): 119902, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798390

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.125.258002.

2.
Nature ; 586(7827): 52-56, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999485

RESUMO

Biological cells generate intricate structures by sculpting their membrane from within to actively sense and respond to external stimuli or to explore their environment1-4. Several pathogenic bacteria also provide examples of how localized forces strongly deform cell membranes from inside, leading to the invasion of neighbouring healthy mammalian cells5. Giant unilamellar vesicles have been successfully used as a minimal model system with which to mimic biological cells6-11, but the realization of a minimal system with localized active internal forces that can strongly deform lipid membranes from within and lead to dramatic shape changes remains challenging. Here we present a combined experimental and simulation study that demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations. Using confocal microscopy, in the experiments we explore the membrane response to local forces exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane changes, we perform Langevin dynamics simulations of active Brownian particles enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The most pronounced shape changes are observed at low and moderate particle loadings, with the formation of tether-like protrusions and highly branched, dendritic structures, whereas at high volume fractions globally deformed vesicle shapes are observed. The resulting state diagram predicts the conditions under which local internal forces generate various membrane shapes. A controlled realization of such distorted vesicle morphologies could improve the design of artificial systems such as small-scale soft robots and synthetic cells.


Assuntos
Lipossomas Unilamelares/química , Células Artificiais/química , Membrana Celular/química , Bicamadas Lipídicas/química , Microscopia Confocal , Modelos Biológicos , Fosfatidilcolinas/química
3.
Phys Rev Lett ; 125(25): 258002, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416358

RESUMO

Recent experiments show a strong rotational diffusion enhancement for self-propelled microrheological probes in colloidal glasses. Here, we provide microscopic understanding using simulations with a frictional probe-medium coupling that converts active translation into rotation. Diffusive enhancement emerges from the medium's disordered structure and peaks at a second-order transition in the number of contacts. Our results reproduce the salient features of the colloidal glass experiment and support an effective description that is applicable to a broader class of viscoelastic suspensions.

4.
Phys Rev E ; 98(2-1): 022605, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253508

RESUMO

Active agents-like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays-show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion) and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations. Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with domains appear.

5.
Soft Matter ; 13(35): 5865-5876, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28766641

RESUMO

Collective behavior of active matter is observed for self-propelled particles, such as vibrated disks and active Brownian particles, as well as for cytoskeletal filaments in motile cells. Here, a system of quasi two-dimensional penetrable self-propelled rods inside rigid rings is used to construct a complex self-propelled particle. The rods interact sterically with each other and with a stationary or mobile ring via a separation-shifted Lennard-Jones potential. They either have a sliding attachment to the inside of the ring at one of their ends, or can move freely within the ring confinement. We study the inner structure and dynamics of the mobile self-propelled rings. We find that these complex particles cannot only be characterized as active Brownian particles, but can also exhibit cell-like motility: random walks, persistent motion, circling, and run-and-circle motion.


Assuntos
Movimento Celular , Modelos Biológicos , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA