Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 115992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262092

RESUMO

Nanoparticles (NPs) of metals and metal oxides have received increasing attention regarding their characteristic behavior in plant systems. The fate and transport of metal NPs and metal oxide NPs in plants is of emerging concern for researchers because they ultimately become part of the food chain. The widespread use of metal-based NPs (MBNPs) in plants has revealed their beneficial and harmful effects. This review addresses the main factors affecting the uptake, translocation, absorption, bioavailability, toxicity, and accumulation of MBNPs in different plant species. It appraises the mechanism of nanoparticle-plant interaction in detail and provides understanding of the estimation strategies for the associated pros and cons with this interplay. Critical parameters of NPs include, but are not limited to, particle size and shape, surface chemistry, surface charge, concentration, solubility, and exposure route. On exposure to MBNPs, the molecular, physiological, and biochemical reactions of plants have been assessed. We have filled knowledge gaps and answered research questions regarding the positive and negative effects of metal and metal oxide NPs on seed germination, callus induction, growth and yield of plant, nutritional content, antioxidants, and enzymes. Besides, the phytotoxicity, cytotoxicity, genotoxicity, and detoxification studies of MBNPs in plants have been outlined. Furthermore, the recent developments and future perspectives of the two-way traffic of interplay of MBNPs and plants have been provided in this comprehensive review.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxidos/toxicidade , Plantas , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Metais/toxicidade , Antioxidantes/farmacologia
2.
Sci Rep ; 14(1): 1934, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253671

RESUMO

Pyroligneous acid (PA) is rich in bioactive compounds and known to have the potential to improve crop productivity and phytochemical content. However, the synergistic effect of PA and fertilizer has not been thoroughly studied. In this study, we assessed the biostimulatory effect of different rates of foliar PA application (i.e., 0, 0.25, 0.5, 1, and 2% PA/ddH2O (v/v)) combined with full rate (i.e., 0.63, 0.28, 1.03 g) and half rate of nitrogen-phosphorus-potassium (NPK) fertilizer on the yield and nutritional quality of greenhouse-grown tomato (Solanum lycopersicum 'Scotia'). Plants treated with 0.25% and 0.5% PA showed a significantly (p < 0.001) higher maximum quantum efficiency of photosystem II (Fv/Fm) and increased potential photosynthetic capacity (Fv/Fo), especially when combined with the full NPK rate. Leaf chlorophyll was significantly (p < 0.001) increased by approximately 0.60 and 0.49 folds in plants treated with 2% PA and full NPK rate compared to no spray and water, respectively. Total number of fruits was significantly (p < 0.001) increased by approximately 0.56 folds with the 2% PA irrespective of the NPK rate. The combined 2% PA and full NPK rate enhanced total fruit weight and the number of marketable fruits. Similarly, fruit protein, sugar and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity were significantly (p < 0.001) enhanced by the combined 2% PA and full NPK rate. In contrast, the 0.5% PA combined with half NPK rate increased fruit carotenoid and phenolic contents while the 2% PA plus half NPK rate enhanced fruit flavonoid content. Generally, the synergistic effect of PA and NPK fertilizer increased fruit elemental composition. These showed that foliar application of 2% PA with full NPK rate is the best treatment combination that can be adopted as a novel strategy to increase the productivity and quality of tomato fruits. However, further study is required to investigate the molecular basis of PA biostimulatory effect on plants.


Assuntos
Solanum lycopersicum , Fertilizantes , Terpenos , Compostos Fitoquímicos/farmacologia
3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686117

RESUMO

Sinorhizobium meliloti 1021 bacteria secretes a considerable amount of flavins (FLs) and can form a nitrogen-fixing symbiosis with legumes. This strain is also associated with non-legume plants. However, its role in plant growth promotion (PGP) of non-legumes is not well understood. The present study evaluated the growth and development of lettuce (Lactuca sativa) and kale (Brassica oleracea var. acephala) plants inoculated with S. meliloti 1021 (FL+) and its mutant 1021ΔribBA, with a limited ability to secrete FLs (FL-). The results from this study indicated that inoculation with 1021 significantly (p < 0.05) increased the lengths and surface areas of the roots and hypocotyls of the seedlings compared to 1021ΔribBA. The kale and lettuce seedlings recorded 19% and 14% increases in total root length, respectively, following inoculation with 1021 compared to 1021ΔribBA. A greenhouse study showed that plant growth, photosynthetic rate, and yield were improved by 1021 inoculation. Moreover, chlorophylls a and b, and total carotenoids were more significantly (p < 0.05) increased in kale plants associated with 1021 than non-inoculated plants. In kale, total phenolics and flavonoids were significantly (p < 0.05) increased by 6% and 23%, respectively, and in lettuce, the increments were 102% and 57%, respectively, following 1021 inoculation. Overall, bacterial-derived FLs enhanced kale and lettuce plant growth, physiological indices, and yield. Future investigation will use proteomic approaches combined with plant physiological responses to better understand host-plant responses to bacteria-derived FLs.


Assuntos
Brassicaceae , Fabaceae , Verduras , Flavinas , Proteômica , Lactuca , Plântula , Bactérias
4.
Plants (Basel) ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687371

RESUMO

Fruits and vegetables are generally known to contain important vitamins, fiber, essential minerals, and vital bioactive compounds that possess health benefits such as anti-inflammatory, antimicrobial, antioxidant, and anticancer properties [...].

5.
Microorganisms ; 11(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37374874

RESUMO

The tree fruit industry in Nova Scotia, Canada, is dominated by the apple (Malus domestica) sector. However, the sector is faced with numerous challenges, including apple replant disease (ARD), which is a well-known problem in areas with intensive apple cultivation. A study was performed using 16S rRNA/18S rRNA and 16S rRNA/ITS2 amplicon sequencing to assess soil- and root-associated microbiomes, respectively, from mature apple orchards and soil microbiomes alone from uncultivated soil. The results indicated significant (p < 0.05) differences in soil microbial community structure and composition between uncultivated soil and cultivated apple orchard soil. We identified an increase in the number of potential pathogens in the orchard soil compared to uncultivated soil. At the same time, we detected a significant (p < 0.05) increase in relative abundances of several potential plant-growth-promoting or biocontrol microorganisms and non-fungal eukaryotes capable of promoting the proliferation of bacterial biocontrol agents in orchard soils. Additionally, the apple roots accumulated several potential PGP bacteria from Proteobacteria and Actinobacteria phyla, while the relative abundances of fungal taxa with the potential to contribute to ARD, such as Nectriaceae and plant pathogenic Fusarium spp., were decreased in the apple root microbiome compared to the soil microbiome. The results suggest that the health of a mature apple tree can be ascribed to a complex interaction between potential pathogenic and plant growth-promoting microorganisms in the soil and on apple roots.

6.
Metabolites ; 13(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367927

RESUMO

Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., 'Scotia') seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin-Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions.

7.
Metabolites ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110197

RESUMO

Plants are sessile, and their ability to reprogram their metabolism to adapt to fluctuations in soil water level is crucial but not clearly understood. A study was performed to determine alterations in intermediate metabolites involved in central carbon metabolism (CCM) following exposure of Mexican mint (Plectranthus amboinicus) to varying watering regimes. The water treatments were regular watering (RW), drought (DR), flooding (FL), and resumption of regular watering after flooding (DHFL) or after drought (RH). Leaf cluster formation and leaf greening were swift following the resumption of regular watering. A total of 68 key metabolites from the CCM routes were found to be significantly (p < 0.01) impacted by water stress. Calvin cycle metabolites in FL plants, glycolytic metabolites in DR plants, total tricarboxylic acid (TCA) cycle metabolites in DR and DHFL plants, and nucleotide biosynthetic molecules in FL and RH plants were significantly (p < 0.05) increased. Pentose phosphate pathway (PPP) metabolites were equally high in all the plants except DR plants. Total Calvin cycle metabolites had a significantly (p < 0.001) strong positive association with TCA cycle (r = 0.81) and PPP (r = 0.75) metabolites. Total PPP metabolites had a moderately positive association with total TCA cycle metabolites (r = 0.68; p < 0.01) and a negative correlation with total glycolytic metabolites (r = -0.70; p < 0.005). In conclusion, the metabolic alterations of Mexican mint plants under different watering regimes were revealed. Future studies will use transcriptomic and proteomic approaches to identify genes and proteins that regulate the CCM route.

8.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559657

RESUMO

Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition.

9.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432882

RESUMO

The benefit sof municipal solid waste (MSW) compost on soil health and plant productivity are well known, but not its long-term effect on soil microbial and plant metabolic pathways. A 5-year study with annual (AN), biennial (BI) and no (C, control) MSW compost application were carried out to determine the effect on soil properties, microbiome function, and plantgrowth and TCA cycle metabolites profile of green beans (Phaseolus vulgaris), lettuce (Latuca sativa) and beets (Beta vulgaris). MSW compost increased soil nutrients and organic matter leading to a significant (p < 0.05) increase in AN-soil water-holding capacity followed by BI-soil compared to C-soil. Estimated nitrogen release in the AN-soil was ca. 23% and 146% more than in BI-soil and C-soil, respectively. Approximately 44% of bacterial community due to compost. Deltaproteobacteria, Bacteroidetes Bacteroidia, and Chloroflexi Anaerolineae were overrepresented in compost amended soils compared to C-soil. A strong positive association existed between AN-soil and 18 microbial metabolic pathways out of 205. Crop yield in AN-soil were increased by 6−20% compared to the BI-soil, and by 35−717% compared to the C-soil. Plant tricarboxylic acid cycle metabolites were highly (p < 0.001) influenced by compost. Overall, microbiome function and TCA cycle metabolites and crop yield were increased in the AN-soil followed by the BI-soil and markedly less in C-soil. Therefore, MSW compost is a possible solution to increase soil health and plants production in the medium to long term. Future study must investigate rhizosphere metabolic activities.

10.
Plants (Basel) ; 11(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807602

RESUMO

Pyroligneous acid (PA) is a reddish-brown liquid obtained through the condensation of smoke formed during biochar production. PA contains bioactive compounds that can be utilized in agriculture to improve plant productivity and quality of edible parts. In this study, we investigated the biostimulatory effect of varying concentrations of PA (i.e., 0%, 0.25%, 0.5%, 1%, and 2% PA/ddH2O (v/v)) application on tomato (Solanum lycopersicum 'Scotia') plant growth and fruit quality under greenhouse conditions. Plants treated with 0.25% PA exhibited a significantly (p < 0.001) higher sub-stomatal CO2 concentration and a comparable leaf transpiration rate and stomatal conductance. The total number of fruits was significantly (p < 0.005) increased by approximately 65.6% and 34.4% following the application of 0.5% and 0.25% PA, respectively, compared to the control. The 0.5% PA enhanced the total weight of fruits by approximately 25.5%, while the 0.25% PA increased the elemental composition of the fruits. However, the highest PA concentration of 2% significantly (p > 0.05) reduced plant growth and yield, but significantly (p < 0.001) enhanced tomato fruit juice Brix, electrical conductivity, total dissolved solids, and titratable acidity. Additionally, total phenolic and flavonoid contents were significantly (p < 0.001) increased by the 2% PA. However, the highest carotenoid content was obtained with the 0.5% and 1% PA treatments. Additionally, PA treatment of the tomato plants resulted in a significantly (p < 0.001) high total ascorbate content, but reduced fruit peroxidase activity compared to the control. These indicate that PA can potentially be used as a biostimulant for a higher yield and nutritional quality of tomato.

11.
Foods ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741941

RESUMO

Global population is estimated to reach about 9.22 billion by 2075. The increasing knowledge on the relationship between food biochemistry and positive health gives an indication of the urgency to exploit food resources that are not only sustainable but also impact human health beyond basic nutrition. A typical example of such novel food is microalgae, an aquatic microorganism with a plethora of diverse bioactive compounds including phenolics, carotenoids, vitamin B12 and peptides. Microalgal bioactive compounds have been shown to possess positive health effects such as antihypertensive, anti-obesity, antioxidative, anticancer and cardiovascular protection. Although, the utilization of microalgal biomass by the functional food industry has faced lots of challenges because of species diversity and variations in biomass and cultivation factors. Other documented challenges were ascribed to changes in functional structures during extraction and purification due to inefficient bio-processing techniques, inconclusive literature information on the bioavailability and safety of the microalgal bioactive compounds and the fishy odor and taste when applied in food formulations. In spite of these challenges, great opportunities exist to exploit their utilization for the development of functional foods. Microalgae are a renewable resource and have fast growth rate. Therefore, detailed research is needed to bridge these challenges to pave way for large-scale commercialization of microalgal-based healthy foods. The focus of this review is to discuss the potential of microalgae as natural ingredients for functional food development, factors limiting their acceptance and utilization in the food industry as well as their safety concerns with respect to human consumption.

12.
Front Plant Sci ; 13: 1085998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714730

RESUMO

Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.

13.
PLoS One ; 16(7): e0254188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237112

RESUMO

A combination of vermicast and sawdust mixed medium is commonly used in horticulture, but the added benefit of microbial inoculation and mechanism of nutrient availability are unknown. This study was done to determine nutrient mineralization and nutrient release patterns of different combinations or a mix of vermicast-sawdust growing media amended with or without Trichoderma viride (105 spores/g). The mixed-media treatments were (1) 80% vermicast+20% sawdust; (2) 60% vermicast+40% sawdust; (3) 40% vermicast+60% sawdust; (4) 20% vermicast+80% sawdust; and (5) sawdust alone (control). Total dissolved solids, electric conductivity and salinity increased with each sampling time following submergence in deionized. Nutrients released from media without T. viride were significantly higher than the corresponding media with added T. viride. Overall, the starting total nitrogen of the different media did not change during the incubation period, but nitrate-nitrogen was reduced to a negligible amount by the end of day 30 of incubation. A repeated measures analysis showed a significant effect of Time*T. viride*Treatment on total dissolved solids. Redundancy analysis demonstrated a positive and strong association between media composed of ≥40% vermicast and ≤60% sawdust with or without T. viride and mineral nutrients released, electrical conductivity, total dissolved solids and salinity. These findings suggest that fast-growing plants may benefit from 40% to 60% vermicast added to 40% to 60% sawdust without T. viride while slow-growing plants can benefit from the same mixed medium combined with the addition of T. viride. Further investigation is underway to assess microbial dynamics in the mixed media and their influence on plant growth.


Assuntos
Nutrientes , Trichoderma , Meios de Cultura , Nitrogênio
14.
Food Res Int ; 143: 110225, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992339

RESUMO

The use of compost to enhance plant growth and mineral nutrients composition are extensively studied but not much literature information exists on its influence on plant metabolic profiles. A study was performed to assess a 5-year variable frequency of application of Compost Quality Alliance tested municipal solid waste (MSW) compost effect on metabolic profiles of the edible portions of four different vegetable plants. The plants were lettuce (Latuca sativa cv. Grand Rapids), beets (Beta vulgaris cv. Detroit Supreme), carrot (Daucus carota cv. Nantes) and green beans (Phaseolus vulgaris cv. Golden Wax) grown under a sub-humid continental climate. The treatments were annual, biennial and no (control) applications of the MSW compost. Typically, soil fertility highly increased with the annual application of the MSW compost followed by the biennial application but declined in the control plot. The annually applied MSW compost increased total amino acids in the lettuce, carrot, beets, and green beans by ca. 323%, 109%, 94% and 18% respectively, compared to the control. Overall, total phospholipids were enhanced by the biennially applied MSW compost. Total organic acids in the lettuce, beets, and green beans were altered by the annual and biennial MSW compost applications by ca. 35% and 23%; 6% and 6.4%; and 22% and 65%, respectively compared to the control. A 2-dimension principal component analysis biplot confirmed positive association between the different frequencies of MSW compost application and soil fertility enhancement of plant metabolites. In conclusion, the annual application of MSW compost enhanced amino acids, phospholipids, acylcarnitines, amines and choline but reduced glucose in the lettuce, beets, carrot, and green beans. Further studies to elucidate the mechanisms underpinning such biofortification will be required.


Assuntos
Compostagem , Resíduos Sólidos , Lactuca , Solo , Verduras
15.
PLoS One ; 14(3): e0214376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30908552

RESUMO

Little is known about the ecology of microbial plastic degradation. In this study, we employed next generation amplicon sequencing to assess the effect of low-density polyethylene (LDPE) films on the structure of bacterial and fungal communities in four mature compost piles with age ranging between 2 and 10 years. While, bacterial Proteobacteria, Bacteroidetes, Actinobacteria and fungi Ascomycota were most abundant across all facilities, our data indicated significant differences in compost microbiomes between compost facilities, which might be related to compost chemical parameters, age of piles and characteristics of the feedstock. In addition, a substantial shift in the interaction pattern within microbial communities from bulk and plastic-associated (PA) compost was detected. For example, cooperation between Firmicutes Bacillaceae and Thermoactinomycetaceae was detected only in PA compost. However, based on the analysis of the diversity indices and the relative abundances of microbial taxa we can conclude that the presence of plastics in compost had no significant effect on the structure of microbial community.


Assuntos
Bactérias/classificação , Fungos/classificação , Microbiota , Plásticos/análise , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodegradação Ambiental , Compostagem , Fungos/efeitos dos fármacos , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 16S/genética
16.
Sci Rep ; 8(1): 14771, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282974

RESUMO

Diets high in vegetable consumption is highly correlated with reduced risk of developing common lifestyle related diseases. We investigated the effects of three natural growth media amendments [potassium humate, dry vermicast, volcanic minerals or Promix alone (Control)] in enhancing the accumulation of functional lipids in greenhouse grown kale. Functional lipids (n9, n6, n3 fatty acids, diglycerides, galactolipids and phytosterols) were assessed using either gas chromatography/mass spectrometry (GC/MS) or ultra-high performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-HRMS/MS). The results showed volcanic minerals and dry vermicast were the most successful in enhancing the accumulation of functional lipids in kale. For example, dry vermicast enhanced the accumulation of total C18:1n9 and C16:3n3 fatty acids, while total C18:2n6 fatty acid accumulation was enhanced by volcanic minerals. In conclusion, natural growing medium amendments are remarkably effective in modulating the accumulation of functional lipids in kale grown under controlled-environment conditions. This could be a useful strategy for functional foods production in control environment production systems. Increase access to kale with enhanced functional lipids could aid in increase consumption of these health promotive compounds in the diet with potential implications in population health.


Assuntos
Brassica/metabolismo , Ácidos Graxos/biossíntese , Lipídeos/biossíntese , Minerais/farmacologia , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Diglicerídeos/biossíntese , Diglicerídeos/metabolismo , Ambiente Controlado , Ácidos Graxos/metabolismo , Galactolipídeos/biossíntese , Galactolipídeos/metabolismo , Lipídeos/química , Espectrometria de Massas , Fitosteróis/biossíntese , Fitosteróis/metabolismo
17.
Food Res Int ; 107: 726-737, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580540

RESUMO

Biofortification using agronomic practices can be used to improve the nutritional quality of food crops. Three natural media amendments (dry vermicast, potassium (K)-humate and volcanic minerals) were assessed under greenhouse conditions to determine the effects on the chemical composition of kale (Brassica oleracea L. var. acephala 'Ripbor'). The results indicated that K-humate had low pH, while the volcanic minerals had high pH. Plants grown in the dry vermicast amended media had the highest levels of macronutrients and micronutrients except for zinc and iron. However, the glycolipid: phospholipid ratio was lower in kale plants cultivated in dry vermicast compared to plants cultivated in the volcanic minerals or K-humate. Conversely, plants cultivated in the dry vermicast had enhanced levels of polyunsaturated fatty acids. The omega-3 fatty acid content was significantly (P < 0.05) higher in plants cultivated in dry vermicast and potassium humate, while the omega-6 fatty acids were unaffected by media amendments. Dry vermicast was the most effective at increasing plant tissue oleic acid content. The total phenolic content and antioxidant capacity were highest in plants treated with K-humate, but lowest in the dry vermicast treated plants. In conclusion, dry vermicast proved to be the most effective in enhancing the phytochemical composition of kale 'Ripbor'. These results suggest dry vermicast could be a potential target natural media amendment for biofortifying kale plants during cultivation.


Assuntos
Biofortificação/métodos , Brassica/metabolismo , Compostagem/métodos , Análise de Alimentos/métodos , Alimentos Fortificados/análise , Substâncias Húmicas , Valor Nutritivo , Folhas de Planta/metabolismo , Erupções Vulcânicas , Antioxidantes/análise , Brassica/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Lipídeos/análise , Minerais/análise , Fenóis/análise , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Vegetais Comestíveis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA