Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38794159

RESUMO

Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.

2.
ACS Omega ; 9(8): 8973-8984, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434836

RESUMO

Vitamin C was examined to ameliorate the neurotoxicity of thimerosal (THIM) in an animal model (Wistar albino rats). In our work, oxidative and antioxidative biomarkers such as SOD, LPO, and GSH were investigated at various doses of THIM with or without concurrent vitamin C administration. Furthermore, the adverse effects of THIM on hepatic tissue and cerebral cortex morphology were examined in the absence or presence of associated vitamin C administration. Also, we studied the effect of vitamin C on the metallothionein isoforms (MT-1, MT-2, and MT-3) in silico and in vivo using the RT-PCR assay. The results showed that the antioxidant biomarker was reduced as the THIM dose was raised and vice versa. THIM-associated vitamin C reduced the adverse effects of the THIM dose. The computation studies demonstrated that vitamin C has a lower ΔG of -4.9 kcal/mol compared to -4.1 kcal/mol for THIM to bind to the MT-2 protein, which demonstrated that vitamin C has a greater ability to bind with MT-2 than THIM. This is due to multiple hydrogen bonds that exist between vitamin C and MT-2 residues Lys31, Gln23, Cys24, and Cys29, and the sodium ion represents key stabilizing interactions. Hydrogen bonds involve electrostatic interactions between hydrogen atom donors (e.g., hydroxyl groups) and acceptors (e.g., carbonyl oxygens). The distances between heavy atoms are typically 2.5-3.5 Å. H-bonds provide directed, high-affinity interactions to anchor the ligand to the binding site. The five H-bonds formed by vitamin C allow it to form a stable complex with MT, while THIM can form two H-bonds with Gln23 and Cys24. This provides less stabilization in the binding pocket, contributing to the lower affinity compared to vitamin C. The histopathological morphologies in hepatic tissue displayed an expansion in the portal tract and the hepatocytes surrounding the portal tract, including apoptosis, binucleation, and karyomegaly. The histopathological morphologies in the brain tissue revealed a significant decrease in the number of Purkinje cells due to THIM toxicity. Interestingly, THIM toxicity was associated with hemorrhage and astrogliosis. Both intracellular and vasogenic edema appeared as the concentrations of THIM rose. Finally, vitamin C ameliorated the adverse effect on the cerebral cortex in Wistar albino rats.

3.
Biomedicines ; 12(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397881

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a major hepatic disorder occurring in non-alcohol-drinking individuals. Salvianic acid A or Danshensu (DSS, 3-(3, 4-dihydroxyphenyl)-(2R)-lactic acid), derived from the root of Danshen (Salvia miltiorrhiza), has demonstrated heart and liver protective properties. In this work, we investigated the antioxidant activity and hepatoprotective activity of Danshensu alone and in combination with different agents, such as probiotic bacteria (Lactobacillus casei and Lactobacillus acidophilus), against several assays. The inhibition mechanism of the methylation gene biomarkers, such as DNMT-1, MS, STAT-3, and TET-1, against DSS was evaluated by molecular docking and RT-PCR techniques. The physicochemical and pharmacokinetic ADMET properties of DSS were determined by SwissADME and pkCSM. The results indicated that all lipid blood test profiles, including cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), were reduced after the oral administration of Danshensu combined with probiotics (L. casei and L. acidophilus) that demonstrated good, efficient free radical scavenging activity, measured using anti-oxidant assays. ADMET and drug-likeness properties certify that the DSS could be utilized as a feasible drug since DSS showed satisfactory physicochemical and pharmacokinetic ADMET properties.

4.
Front Oncol ; 12: 933750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457501

RESUMO

Zinc oxide nanomaterial is a potential material in the field of cancer therapy. In this study, zinc oxide nanospheres (ZnO-NS) were synthesized by Sol-gel method using yeast extract as a non-toxic bio-template and investigated their physicochemical properties through various techniques such as FTIR, XR, DLS, and TEM. Furthermore, free zinc ions released from the zinc oxide nanosphere suspended medium were evaluated by using the ICP-AS technique. Therefore, the cytotoxicity of ZnO nanospheres and released Zn ions on both HuH7 and Vero cells was studied using the MTT assay. The data demonstrated that the effectiveness of ZnO nanospheres on HuH7 was better than free Zn ions. Similarly, ZnO-Ns were significantly more toxic to HuH7 cell lines than Vero cells in a concentration-dependent manner. The cell cycle of ZnO-Ns against Huh7 and Vero cell lines was arrested at G2/M. Also, the apoptosis assay using Annexin-V/PI showed that apoptosis of HuH7 and Vero cell lines by ZnO nanospheres was concentration and time-dependent. Caspase 3 assay results showed that the apoptosis mechanism may be intrinsic and extrinsic pathways. The mechanism of apoptosis was determined by applying the RT-PCR technique. The results revealed significantly up-regulated Bax, P53, and Cytochrome C, while the Bcl2 results displayed significant down-regulation and the western blot data confirmed the RT-PCR data. There is oxidative stress of the ZnO nanospheres and free Zn+2 ions. Results indicated that the ZnO nanospheres and free Zn+2 ions induced oxidative stress through increasing reactive oxygen species (ROS) and lipid peroxidation. The morphology of the HuH7 cell line after exposure to ZnO nanospheres at different time intervals revealed the presence of the chromatin condensation of the nuclear periphery fragmentation. Interestingly, the appearance of canonical ultrastructure features of apoptotic morphology of Huh7, Furthermore, many vacuoles existed in the cytoplasm, the majority of which were lipid droplets, which were like foamy cells. Also, there are vesicles intact with membranes that are recognized as swollen mitochondria.

5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293055

RESUMO

The increasing prevalence of obesity has become a demanding issue in both high-income and low-income countries. Treating obesity is challenging as the treatment options have many limitations. Recently, diet modification has been commonly applied to control or prevent obesity and its risks. In this study, we investigated novel therapeutic approaches using a combination of a potential probiotic source with prebiotics. Forty-eight adult male Sprague-Dawley rats were selected and divided into seven groups (eight rats per group). The first group was fed a high-fat diet, while the second group was a negative control. The other five groups were orally administered with a probiotic, Lactiplantibacillus plantarum (L. plantarum), and potential prebiotics sources (chia seeds, green tea, and chitosan) either individually or in combination for 45 days. We collected blood samples to analyze the biochemical parameters and dissected organs, including the liver, kidney, and pancreas, to evaluate obesity-related injuries. We observed a more significant decrease in the total body weight by combining these approaches than with individual agents. Moreover, treating the obese rats with this combination decreased serum catalase, superoxide dismutase, and liver malondialdehyde levels. A histopathological examination revealed a reduction in obesity-related injuries in the liver, kidney, and pancreas. Further docking studies indicated the potential role of chia seeds and green tea components in modulating obesity and its related problems. Therefore, we suggest that the daily administration of a pre- and probiotic combination may reduce obesity and its related problems.


Assuntos
Quitosana , Hiperlipidemias , Ratos , Masculino , Animais , Chá , Catalase , Quitosana/farmacologia , Quitosana/uso terapêutico , Ratos Sprague-Dawley , Obesidade/tratamento farmacológico , Obesidade/patologia , Dieta Hiperlipídica/efeitos adversos , Sementes , Inflamação/tratamento farmacológico , Superóxido Dismutase , Malondialdeído
6.
Molecules ; 27(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35807348

RESUMO

Carnosic acid (CA) is a natural phenolic compound with several biomedical actions. This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2 genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs has been introduced as a promising formula for treating breast and colorectal cancer.


Assuntos
Neoplasias Colorretais , Nanopartículas , Abietanos , Apoptose , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Ciclo-Oxigenase 2 , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2 , Soroalbumina Bovina/química
7.
Immunol Invest ; 51(2): 266-289, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32993405

RESUMO

Autophagy is a cellular housekeeping process that incorporates lysosomal-degradation to maintain cell survival and energy sources. In recent decades, the role of autophagy has implicated in the initiation and development of many diseases that affect humanity. Among these diseases are autoimmune diseases and neurodegenerative diseases, which connected with the lacking autophagy. Other diseases are connected with the increasing levels of autophagy such as cancers and infectious diseases. Therefore, controlling autophagy with sufficient regulators could represent an effective strategy to overcome such diseases. Interestingly, targeting autophagy can also provide a sufficient method to combat the current epidemic caused by the ongoing coronavirus. In this review, we aim to highlight the physiological function of the autophagic process to understand the circumstances surrounding its role in the cellular immunity associated with the development of human diseases.


Assuntos
Autofagia , Neoplasias , Humanos , Imunidade Celular
8.
Comput Biol Med ; 141: 105149, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953359

RESUMO

Seasonal human influenza is a serious respiratory infection caused by influenza viruses that can be found all over the world. Type A influenza is a contagious viral infection that, if left untreated, can lead to life-threatening consequences. Fortunately, the plant kingdom has many potent medicines with broad-spectrum antiviral activity. Herein, six plant constituents, namely Tanshinone IIA 1, Carnosic acid 2, Rosmarinic acid 3, Glycyrrhetinic acid 4, Baicalein 5, and Salvianolic acid B 6, were screened for their antiviral activities against H1N1 virus using in vitro and in silico approaches. Hence, their anti-influenza activities were tested in vitro to determine inhibitory concentration 50 (IC50) values after measuring their CC50 values using MTT assay on MDCK cells. Interestingly, Tanshinone IIA (TAN) 1 was the most promising member with CC50 = 9.678 µg/ml. Moreover, the plaque reduction assay carried on TAN 1 revealed promising viral inhibition percentages of 97.9%, 95.8%, 94.4%, and 91.7% using concentrations 0.05 µg/µl, 0.025 µg/µl, 0.0125 µg/µl, and 0.006 µg/µl, respectively. Furthermore, in silico molecular docking disclosed the superior affinities of Salvianolic acid B (SAL) 6 towards both surface glycoproteins of influenza A virus (namely, hemagglutinin (HA) and neuraminidase (NA)). The docked complexes of both SAL and TAN inside HA and NA receptor pockets were selected for 100 ns MD simulations followed by MM-GBSA binding free energy calculation to confirm the docking results and give more insights regarding the stability of both compounds inside influenza mentioned receptors, respectively. The selection criteria of the previously mentioned complexes were based on the fact that SAL showed the highest docking scores on both viral HA and NA glycoproteins whereas TAN achieved the best inhibitory activity on the other hand. Finally, we urge more advanced preclinical and clinical research, particularly for TAN, which could be used to treat the human influenza A virus effectively.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Abietanos , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A/metabolismo , Simulação de Acoplamento Molecular , Neuraminidase/metabolismo , Neuraminidase/farmacologia
9.
Front Pharmacol ; 12: 661217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721007

RESUMO

The angiogenesis process is an essential issue in tissue engineering. Zinc oxide nanorods are biocompatible metals capable of generating reactive oxygen species (ROS) that respond to induced angiogenesis through various mechanisms; however, released Zn (II) ions suppress the angiogenesis process. In this study, we fabricated green ZnO nanorods using albumin eggshell as a bio-template and investigate its angiogenic potential through chorioallantoic membrane assay and excision wound healing assay. This study demonstrated that angiogenesis and wound healing processes depend on pro-angiogenic factors as VEGF expression due to ZnO nanorods' exiting. Angiogenesis induced via zinc oxide nanorods may develop sophisticated materials to apply in the wound healing field.

10.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641156

RESUMO

Therapeutic selectivity is a critical issue in cancer therapy. As a result of its adjustable physicochemical characteristics, the Au/cellulose nanocomposite currently holds a lot of potential for solving this challenge. This work was designed to prepare a Au/cellulose nanocomposite with enhanced anticancer activity through the regulation of the mitogen-activated protein kinases (MAPK) signaling pathway. Nanocellulose, nanogold (AuNPs), and a Au/cellulose nanocomposite were biosynthesized from microgreen alga Chlorella vulgaris. Using UV-Vis absorption spectroscopy, transmission electron microscope (TEM), zeta potential analyzer, and Fourier transform infrared spectroscopy (FTIR), the synthesized nanoparticles were confirmed and characterized. In human alveolar basal epithelial cells (A549 cells), the selectivity and anticancer activity of the produced nanoparticles were evaluated. The cytotoxicity results revealed that the inhibitory concentration (IC50) of the Au/cellulose nanocomposite against A549 cancer lung cells was 4.67 ± 0.17 µg/µL compared to 182.75 ± 6.45 µg/µL in the case of HEL299 normal lung fibroblasts. It was found that treatment with nanocellulose and the Au/cellulose nanocomposite significantly increased (p < 0.05) the relative expression of tumor suppressor 53 (p53) in comparison to control cells. They also significantly (p < 0.05) decreased the relative expression of the Raf-1 gene. These findings indicate that nanocellulose and the Au/cellulose nanocomposite regulate cell cycles mostly via the motivation of p53 gene expression and reduction of Raf-1 gene expression.

11.
RSC Adv ; 11(47): 29267-29286, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492070

RESUMO

Six compounds namely, tanshinone IIA (1), carnosic acid (2), rosmarinic acid (3), salvianolic acid B (4), baicalein (5), and glycyrrhetinic acid (6) were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies. Molecular docking recommended the superior affinities of both salvianolic acid B (4) and glycyrrhetinic acid (6) as the common results from the previously published computational articles. On the other hand, their actual anti-SARS-CoV-2 activities were tested in vitro using plaque reduction assay to calculate their IC50 values after measuring their CC50 values using MTT assay on Vero E6 cells. Surprisingly, tanshinone IIA (1) was the most promising member with IC50 equals 4.08 ng µl-1. Also, both carnosic acid (2) and rosmarinic acid (3) showed promising IC50 values of 15.37 and 25.47 ng µl-1, respectively. However, salvianolic acid (4) showed a weak anti-SARS-CoV-2 activity with an IC50 value equals 58.29 ng µl-1. Furthermore, molecular dynamics simulations for 100 ns were performed for the most active compound from the computational point of view (salvianolic acid 4), besides, the most active one biologically (tanshinone IIA 1) on both the S and Mpro complexes of them (four different molecular dynamics processes) to confirm the docking results and give more insights regarding the stability of both compounds inside the SARS-CoV-2 mentioned receptors, respectively. Also, to understand the mechanism of action for the tested compounds towards SARS-CoV-2 inhibition it was necessary to examine the mode of action for the most two promising compounds, tanshinone IIA (1) and carnosic acid (2). Both compounds (1 and 2) showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication. This recommended the predicted activity of the two compounds against the S protein of SARS-CoV-2 rather than its Mpro protein. Our results could be very promising to rearrange the previously mentioned compounds based on their actual inhibitory activities towards SARS-CoV-2 and to search for the reasons behind the great differences between their in silico and in vitro results against SARS-CoV-2. Finally, we recommend further advanced preclinical and clinical studies especially for tanshinone IIA (1) to be rapidly applied in COVID-19 management either alone or in combination with carnosic acid (2), rosmarinic acid (3), and/or salvianolic acid (4).

12.
Immunol Invest ; 49(3): 249-263, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31264496

RESUMO

BACKGROUND: A heart attack occurs when coronary artery blockage interrupts the blood supply to the heart such as is seen in cardiovascular disease (CVD). Importantly, autophagy is commonly regarded as a host defense mechanism against microbial invaders. METHODS: A total of 50 blood samples were obtained from cardiovascular (CV) patients in addition to 30 samples that were obtained from healthy individuals and served as controls. Macrophages were isolated in vitro and propagated from the blood samples. Autophagosome formation, cytokine secretion, and apolipoprotein B (ApoB) gene expression were monitored in patient samples and their derived macrophages. RESULTS: The results showed that autophagy-related (Atg) LC3 and Atg5 genes were significantly down-regulated in all samples obtained from CV patients. Furthermore, the relative gene expression of ApoB, which plays the major role in lipoprotein metabolism, was significantly increased in CV patients. Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were increased in these blood samples. Interestingly, targeting of ApoB by small interference RNA (siRNA) reduced the production levels of low-density lipoprotein (LDL), IL-6 and TNF-α in patient-derived macrophages. Further, treatment of patient-derived macrophages with rapamycin, an autophagy inducer agent, successfully regulated the production of LDL, IL-6, TNF-α, and ApoB expression via activation of autophagosome formation. CONCLUSION: The current data reveal the potential disturbance of autophagy in CV patients that accompanied ApoB over-expression. Furthermore, our findings provide evidence for the protective role of autophagy in accumulation of pro-inflammatory cytokines and intracellular LDL degradation in CV patient-derived macrophages.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Doenças Cardiovasculares/patologia , Apolipoproteína B-100/genética , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , Regulação para Baixo/genética , Feminino , Humanos , Inflamação , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Sirolimo/farmacologia
13.
Front Oncol ; 9: 1220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781509

RESUMO

Introduction: Cancer is one of the most difficult challenges faced by humanity due to its many associated issues, such as inability to prevent diseases, treatment safety, and high mortality rate. In cancer, a variety of cellular signaling is activated to ensure malignancy transformation, angiogenesis and metastasis. The most efficient signaling pathway in cancer is mitogen-activated protein kinase (MAPK), which controls malignancy and regulates apoptosis. Methods: Four different flavonoid glycosides have been isolated from Pulicaria jaubertii using the phytochemical characterization of hydro-methanol extract. The purified glycosides (PJs) were investigated for their potential repression of cancer development using human lung epithelial cells and hepatocellular carcinoma (HCC) and compared with Sorafenib (SOR), the standard systemic drug for HCC. In PJ-treated cells, the expression profile of K-Ras, B-Raf, and P53 were detected using qRT-PCR, flow cytometry, confocal microscopy and western blot. Steady-state mRNA and levels of transforming growth factor-beta (TGF-ß) and interleukin 8 (IL-8) were monitored in the fluids media at different time points following treatment. Results: Our results showed that the qurictine glycosides (PJ-1 and PJ-9) selectively inhibited the mutant K-Ras/B-Raf proteins expression and interaction in both cancer cells; while SOR showed obvious depletion of total Raf-1 protein in cancer cells and normal cells as well. Interestingly, the combination of PJ-1 or PJ-9 with SOR exhibited restoring cell viability of normal cells via controlling Raf-1 and P53 genes expression. Further, these identified PJ agents significantly adjusted the levels of TGF-ß and IL-8 in cancer treated cells accompanied by restoring the activation of P53 expression. These findings were confirmed by docking analysis of PJs ligand and the crystal structure of K-Ras, B-Raf, and ERK transcription factor. Conclusion: The current data provide novel and natural multi-kinase inhibitors with competitive regulation of the mutant proteins; K-Ras and B-Raf and sustained MAPK signaling without any detectable toxic effect in normal cells.

14.
J Med Virol ; 91(1): 45-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153335

RESUMO

Influenza is a highly infectious disease caused by three types of viruses, including influenza A virus (IAV), influenza B virus, and, rarely, influenza C virus. IAV is a major, global public health threat, causing approximately 500 000 deaths per year worldwide. The new strains of IAV have emerged due to a mutation called antigenic shift, which results in a new subtype of the virus that shows resistance to common antiviral drugs. Here, guava and lemon extracts, including green leaves and flowers, were investigated for their activity against IAV replication in human A549 cells. Concomitantly, the cytotoxicity of a potent extract on host-cell multiplication was assessed. Our results reveal that guava extracts inhibit IAV replication, indicated by viral nucleoprotein expression profile and traditional plaque assay. Interestingly, treatment with guava extract inactivates Akt protein kinase and stimulates the pro-apoptotic protein P53, at early stages of infection. Furthermore, purified guava flavonoid glycosides (GFGs) show competitive inhibition of IAV-virus replication via early regulation of IL-1ß and IL-8 in association with P53 gene expression. The docking analysis of GFGs and the protein structure of upstream targets for the Akt signaling pathway indicates a sufficient interaction and stabilization with Gbr2 protein. These data indicate that treatment with GFGs disturbs IAV replication via activation of P53 and its apoptotic related factors after infection. Collectively, these data show that targeting of essential host kinases that are involved in the replication cycle of IAV and rescue of P53 activity by GFGs could represent a new strategy to eradicate IAV.


Assuntos
Antivirais/farmacologia , Glicosídeos/metabolismo , Vírus da Influenza A/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Psidium/química , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/efeitos dos fármacos , Células A549 , Antivirais/isolamento & purificação , Citrus/química , Glicosídeos/isolamento & purificação , Humanos , Vírus da Influenza A/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Proteínas do Nucleocapsídeo , Extratos Vegetais/isolamento & purificação , Proteínas de Ligação a RNA/análise , Proteínas do Core Viral/análise , Ensaio de Placa Viral
15.
Front Cell Dev Biol ; 7: 390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32064256

RESUMO

Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium that infects the human respiratory tract causing Legionnaires' disease, a severe form of pneumonia. Recently, rising evidence indicated the ability of Legionella to regulate host defense via its type 4 secretion system including hundreds of effectors that promote intracellular bacterial replication. The host defense against such invaders includes autophagic machinery that is responsible for degradation events of invading pathogens and recycling of cell components. The interplay between host autophagy and Legionella infection has been reported, indicating the role of bacterial effectors in the regulation of autophagy during intracellular replication. Here, we investigated the potential impact of Legionella effector Lpg2936 in the regulation of host autophagy and its role in bacterial replication using mice-derived macrophages and human lung epithelial cells (A549 cells). First, monitoring of autophagic flux following infection revealed a marked reduction of Atg7 and LC3B expression profile and low accumulation levels of autophagy-related LC3-I, LC3-II, and the Atg12-Atg5 protein complex. A novel methyladenine alteration was observed due to irreversible changes of GATC motif to G(6 mA) TC in the promoter region of Atg7 and LC3B indicated by cleaved genomic-DNA using the N6 methyladenine-sensitive restriction enzyme DpnI. Interestingly, RNA interference (RNAi) of Lpg2936 in infected macrophages showed dramatic inhibition of bacterial replication by restoring the expression of autophagy-related proteins. This is accompanied by low production levels of bacterial-associated pro-inflammatory cytokines. Furthermore, a constructed Lpg2936 segment in the GFP expression vector was translocated in the host nucleus and successfully induced methyladenine changes in Atg7 and LC3B promoter region and subsequently regulated autophagy in A549 cells independent of infection. Finally, treatment with methylation inhibitors 5-AZA and (2)-Epigallocatechin-3-gallate (EGCG) was able to restore autophagy-related gene expression and to disrupt bacterial replication in infected macrophages. This cumulative evidence indicates the methylation effect of Legionella effector Lpg2936 on the host autophagy-related molecules Atg7 and LC3B and subsequent reduction in the expression levels of autophagy effectors during intracellular replication of L. pneumophila.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA