Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1071-1079, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581637

RESUMO

PURPOSE: Lung fibrosis is a heterogeneous lung condition characterized by excessive accumulation of scarred tissue, leading to lung architecture destruction and restricted ventilation. The current work was conducted to examine the probable shielding influence of cinnamic acid against lung fibrosis induced by methotrexate. METHODS: Rats were pre-treated with oral administration of cinnamic acid (50 mg/kg/day) for 14 days, whereas methotrexate (14 mg/kg) was orally given on the 5th and 12th days of the experiment. Pirfenidone (50 mg/kg/day) was used as a standard drug. At the end of the experiment, oxidative parameters (malondialdehyde, myeloperoxidase, nitric oxide, and total glutathione) and inflammatory mediators (tumor necrosis factor-α and interleukin-8), as well as transforming growth factor-ß and collagen content, as fibrosis indicators, were measured in lung tissue. RESULTS: Our results revealed that cinnamic acid, as pirfenidone, effectively prevented the methotrexate-induced overt histopathological damage. This was associated with parallel improvements in oxidative, inflammatory, and fibrotic parameters measured. The outcomes of cinnamic acid administration were more or less the same as those of pirfenidone. In conclusion, pre-treatment with cinnamic acid protects against methotrexate-induced fibrosis, making it a promising prophylactic adjuvant therapy to methotrexate and protecting against its possible induction of lung fibrosis.


Assuntos
Cinamatos , Fibrose Pulmonar , Piridonas , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Metotrexato/toxicidade , Pulmão , Fibrose
3.
Food Chem Toxicol ; 184: 114386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123053

RESUMO

Inflammatory bowel disease (IBD) patients frequently suffer from depressive disorders as well. The present study was carried out to explore whether treatment with a standardized rice bran extract (RBE) could affect depression-like behavior in rats with dextran sulfate sodium (DSS)-induced colitis. Male Wistar rats were treated with RBE (100 mg/kg/day; p.o.) for 2 weeks. During the second week, colitis was induced by feeding the rats with 5 % (w/v) DSS in drinking water. RBE protected against DSS-induced body weight loss as well as against the macro- and microscopic inflammatory changes of the colon. Additionally, RBE mitigated DSS-induced dysregulation in blood-brain barrier tight junctional proteins, preserved the hippocampal histopathological architecture and improved the animal behavior in the forced swimming test. This was associated with modulation of hippocampal oxidative stress marker; GSH as well as hippocampal pro-inflammatory mediators; NF-ĸB and IL-1ß. Treatment with RBE also led to a profound increase in the hippocampal levels of Sirt1, PGC-1α, Nrf2, and HO-1, which were drastically dropped by DSS. In conclusion, the study revealed the protective effect of RBE against DSS-induced depressive-like behavior through modulation of different parameters along the gut-brain axis and up-regulated the Sirt1/PGC-1α/Nrf2/HO-1 signaling pathway.


Assuntos
Colite , Oryza , Animais , Humanos , Masculino , Camundongos , Ratos , Eixo Encéfalo-Intestino , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Oryza/metabolismo , Ratos Wistar , Transdução de Sinais , Sirtuína 1/metabolismo , Sódio/química
4.
Life Sci ; 330: 122004, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544378

RESUMO

AIMS: Depression is one of the common neurological comorbidities in patients with inflammatory bowel disease (IBD). The current study aimed to investigate the potential impact of niacin on colitis-induced depressive-like behavior in rats. MATERIALS AND METHODS: Animals were given 5 % dextran sulfate sodium (DSS) in drinking water for one week to induce colitis. Niacin (80 mg/kg), with or without mepenzolate bromide (GPR109A blocker), was administered once per day throughout the experimental period. Rats were tested for behavioral changes using open field and forced swimming tests. KEY FINDINGS: Niacin significantly ameliorated DSS-induced behavioral deficits and alleviated macroscopic and microscopic colonic inflammatory changes. It also augmented the hippocampal levels of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the blood-brain barrier (BBB) integrity. Moreover, niacin decreased hippocampal IL-1ꞵ and NF-ĸB contents but increased GSH, Sirt-1, Nrf-2, HO-1 concentrations. All these beneficial effects were partially abolished by the co-administration of mepenzolate bromide. SIGNIFICANCE: The neuroprotective effect of niacin against DSS-induced depressive-like behavior was partially mediated through GPR109A-mediated mechanisms. Such mechanisms are also involved in modulating neuronal oxidative stress and inflammation via Sirt-1/Nrf-2/HO-1 signaling pathways.


Assuntos
Colite , Niacina , Animais , Ratos , Benzilatos/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Niacina/farmacologia
5.
Biochem Pharmacol ; 214: 115673, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414101

RESUMO

Ulcerative Colitis (UC) is a chronic idiopathic inflammatory bowel disease in which the colon's lining becomes inflamed. Exploring herbal remedies that can recover mucosal damage is becoming popular in UC. The study aims to investigate the probable colo-protective effect of a natural isoflavone, genistein (GEN), and/or a drug, sulfasalazine (SZ), against acetic acid (AA)-induced UC in rats, in addition to exploring the possible underlying mechanisms. UC was induced by the intrarectal installation of 1-2 ml of 5% diluted AA for 24 h. Ulcerated rats were allocated into the disease group and three treated groups, with SZ (100 mg/kg), GEN (100 mg/kg), and their combination for 14 days, besides the control groups. The anti-colitic efficacy of GEN and/or SZ was evidenced by hindering the AA-induced weight loss, colon edema, and macroscopic scores, besides reduced disease activity index and colon weight/length ratio. Furthermore, treatments attenuated the colon histopathological injury scores, increased the number of goblet cells, and lessened fibrosis. Both treatments reduced the up-regulation of INF-γ/JAK1/STAT1 and INF-γ /TLR-4/ NF-κB signaling pathways and modulated the IRF-1/iNOS/NO and IL-6/JAK2/STAT3/COX-2 pathways and consequently, reduced the levels of TNF-α and IL-1ß. Moreover, both treatments diminished oxidative stress, which appeared by reducing the MPO level and elevating the SOD activity, and hindered apoptosis; proved by the decreased immunohistochemical expression of caspase-3. The current findings offer novel insights into the protective effects of GEN and suggest a superior benefit of combining GEN with SZ, over either drug alone, in the UC management.


Assuntos
Colite Ulcerativa , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Ciclo-Oxigenase 2/metabolismo , Genisteína/farmacologia , Receptor 4 Toll-Like/metabolismo , Ácido Acético/toxicidade , Ácido Acético/metabolismo , Colo
6.
Int Immunopharmacol ; 115: 109711, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640710

RESUMO

Recurrent seizures characterize epilepsy, a complicated and multifaceted neurological disease. Several neurological alterations, such as cell death and the growth of gorse fibers, have been linked to epilepsy. The dentate gyrus of the hippocampus is particularly vulnerable to neuronal loss and abnormal neuroplastic changes in the pentylenetetrazol (PTZ) kindling model. Biochanin A has potent anti-inflammatory and antioxidant properties, according to previous evidence and its possible impact in epilepsy has never previously been claimed. The current work aimed to investigate biochanin A's anti-epileptic potential in PTZ-induced kindling model in mice. Chronic epilepsy was established in mice by giving PTZ (35 mg/kg, i.p) every other day for 21 days. Biochanin A (20 mg/kg) was given daily till the end of the experiment. Biochanin A pretreatment significantly reduced the severity of epileptogenesis by 51.7% and downregulated the histological changes in the CA3 region of the hippocampus by 42% along with displaying antioxidant/anti-inflammatory efficacy through upregulated hemeoxygenase-1 (HO-1) and, erythroid 2-related factor 2 (Nrf2) levels in the brain by 1.9-fold and 2-fold respectively, parallel to reduction of malondialdehyde (MDA), myeloperoxidase (MPO), glial fibrillary acidic protein (GFAP) and L-glutamate/IL-1ß/TXNIB/NLRP3 axis. Moreover, biochanin A suppressed neuronal damage by reducing the astrocytes' activation and significantly attenuated the PTZ-induced increase in LC3 levels by 55.5%. Furthermore, molecular docking findings revealed that BIOCHANIN A has a higher affinity for phosphoinositide 3-kinase (PI3k), threonine kinase2 (AKT2), and mammalian target of rapamycin complex 1 (mTORC1) indicating the neuroprotective and anti-epileptic characteristics of biochanin A in the brain tissue of PTZ-kindled mice.


Assuntos
Epilepsia , Pentilenotetrazol , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antioxidantes/farmacologia , Neuroproteção , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Autofagia , Hipocampo/metabolismo , Mamíferos
7.
J Pharm Pharmacol ; 74(12): 1765-1775, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227279

RESUMO

OBJECTIVES: The present research focused on estimating, for the first time, the potential protective effects of bromelain against D-galactosamine-induced acute liver injury in rats as well as identifying the possible underlying mechanisms. METHODS: Silymarin (100 mg/kg/day, p.o.) as a reference drug or bromelain (20 and 40 mg/kg/day, p.o.) were administered for 10 days, and on the 8th day of the experiment, a single dose of galactosamine (400 mg/kg/i.p.) induced acute liver injury. KEY FINDINGS: Pretreatment with bromelain improved liver functions and histopathological alterations induced by galactosamine. Bromelain ameliorated oxidative stress by inducing SIRT1 protein expression and increasing LKB1 content. This resulted in phosphorylating the AMPK/GSK3ß axis, which stimulated Nrf2 activation in hepatic cells and thus increased the activity of its downstream antioxidant enzymes [HO-1 and NQO1]. Besides, bromelain exerted significant anti-apoptotic and anti-inflammatory effects by suppressing hepatic contents of TNF-α, NF-κB p65, as well as caspase-8 and caspase-9. The protective effects of bromelain40 were proved to be better than silymarin and bromelain20 in most of the assessed parameters. CONCLUSIONS: Our results highlight the significant hepatoprotective effects of bromelain against acute liver injury through modulation of SIRT1/LKB1/AMPK, GSK3ß/Nrf2 signalling in addition to NF-κB p65/TNF-α/ caspase-8 and -9 pathway.


Assuntos
Bromelaínas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Bromelaínas/farmacologia , Caspase 8/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Galactosamina/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Silimarina/farmacologia , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Fundam Clin Pharmacol ; 36(2): 338-349, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34312906

RESUMO

Tamoxifen (TAM) is a life-saving and cost-effective drug widely used in the prevention and treatment of breast cancer. However, the adverse effects of tamoxifen can lead to non-adherence and poor patient outcomes. Therefore, exploring novel strategies to improve TAM safety profile is crucial. Given the key role that vitamin D (VD) plays in modulating lipid metabolism and inflammation, in addition to its benefits in reducing risk and progression of breast cancer, we evaluated the protective potential of VD against TAM-induced hepatotoxicity focusing on lipid metabolism and microRNAs (miRNAs) regulation. Female rats were pretreated with VD as cholecalciferol (500 IU/kg/day, po) for 4 weeks before receiving TAM (40 mg/kg/day, po) concurrently with VD during the fifth and sixth weeks. Liver histology, lipid profile and expression of genes, proteins, and miRNAs involved in lipid metabolism and inflammation were examined. TAM-induced steatohepatitis was evidenced by elevated liver triglycerides and cholesterol contents, increased serum miRNA-122 level, and ALT activity, in parallel with accumulation of lipid droplets, focal necrosis, and inflammatory cells infiltration in hepatocytes. Prophylactic use of VD mitigated TAM-induced steatohepatitis by modulating key transcription factors in the liver: PPAR-α, Srebf1, and NF-κB and their downstream genes/proteins Fas, CPT-1A, and TNF-α resulting in reduced hepatic lipids and suppressed pro-inflammatory signaling. Notably, VD pretreatment mitigated TAM-induced alterations in the expression of serum miRNA-122, hepatic miRNA-21, and miRNA-33. The combination therapy of VD and TAM has complementary benefits in terms of safety and not only efficacy and should be further investigated clinically.


Assuntos
Fígado Gorduroso , MicroRNAs , Animais , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/prevenção & controle , Feminino , MicroRNAs/genética , Ratos , Tamoxifeno/farmacologia , Vitamina D
9.
Front Pharmacol ; 12: 651150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995066

RESUMO

Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-ß). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in p-Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.

10.
Biomed Pharmacother ; 128: 110303, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480228

RESUMO

Hibiscus sabdariffa L. (Malvaceae) is one of the well-known traditionally used remedy worldwide. It exhibited numerous pharmacological properties including antioxidant, antidepressant, sedative, anti-inflammatory, antiproliferative, antimicrobial and neuroprotective activities. The aim of this study is to highlight the mechanisms underlying the neuroprotective effects of anthocyanin-enriched extracts of two Hibiscus varieties (white and red calyces) in the management of Alzheimer's disease (AD) in addition to their metabolic profiling. The anthocyanin contents were determined quantitatively using the pH-differential technique and qualitatively by LC/MS/MS. The extracts were tested in vitro for their antioxidant potential as well as acetylcholinesterase inhibition activity and both showed promising activities. The LC/MS/MS analysis allowed the tentative identification of 26 and 24 metabolites in red and white calyces, respectively, represented by anthocyanins, flavonoids, aliphatic and phenolic acids. In vivo, streptozotocin induced AD in mice model was established and Hibiscus extracts were tested at a dose of 200 mg kg-1 compared to celecoxib (30 mg/kg). Histopathology of cerebral cortex and hippocampus, immunohistochemistry for tau- protein and caspase-3 with behavioral tests and measurement of several biochemical parameters were done. Hibiscus prevented memory impairment, and this could be attributed to the amelioration of STZ-induced neuroinflammation and amyloidogenesis. Consequently, Hibiscus represents a promising safe agent that can be repurposed for AD through exerting anti-inflammatory, anti-acetylcholinesterase, antioxidant, and anti-amyloidogenic activities.


Assuntos
Doença de Alzheimer/prevenção & controle , Encéfalo/efeitos dos fármacos , Hibiscus , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Hibiscus/química , Masculino , Memória/efeitos dos fármacos , Metabolômica , Camundongos , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/isolamento & purificação , Estreptozocina , Proteínas tau/metabolismo
11.
World J Gastroenterol ; 25(39): 5926-5935, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31660030

RESUMO

BACKGROUND: Proton pump inhibitors are often used to prevent gastro-intestinal lesions induced by nonsteroidal anti-inflammatory drugs. However, they are not always effective against both gastric and duodenal lesions and their use is not devoid of side effects. AIM: To explore the mechanisms mediating the clinical efficacy of STW 5 in gastro-duodenal lesions induced by nonsteroidal anti-inflammatory drugs (NSAIDs), exemplified here by diclofenac, in a comparison to omeprazole. METHODS: Gastro-duodenal lesions were induced in rats by oral administration of diclofenac (5 mg/kg) for 6 successive days. One group was given concurrently STW 5 (5 mL/kg) while another was given omeprazole (20 mg/kg). A day later, animals were sacrificed, stomach and duodenum excised and divided into 2 segments: One for histological examination and one for measuring inflammatory mediators (tumor necrosis factor α, interleukins-1ß and 10), oxidative stress enzyme (heme oxygenase-1) and apoptosis regulator (B-cell lymphoma 2). RESULTS: Diclofenac caused overt histological damage in both tissues, associated with parallel changes in all parameters measured. STW 5 and omeprazole effectively prevented these changes, but STW 5 superseded omeprazole in protecting against histological damage, particularly in the duodenum. CONCLUSION: The findings support the therapeutic usefulness of STW 5 and its superiority over omeprazole as adjuvant therapy to NSAIDs to protect against their possible gastro-duodenal side effects.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Úlcera Duodenal/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Úlcera Gástrica/tratamento farmacológico , Animais , Diclofenaco/efeitos adversos , Modelos Animais de Doenças , Úlcera Duodenal/induzido quimicamente , Úlcera Duodenal/patologia , Duodeno/efeitos dos fármacos , Duodeno/patologia , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Resultado do Tratamento
12.
World J Gastroenterol ; 22(10): 2931-48, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26973390

RESUMO

AIM: To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats. METHODS: Giving a fructose-enriched diet (FED) to rats for 12 wk was used as a model for inducing hepatic dyslipidemia and insulin resistance. Adult male albino rats (150-200 g) were divided into a control group and a FED group which was subdivided into 4 groups, a control FED, fenofibrate (FENO) (100 mg/kg), resveratrol (RES) (70 mg/kg) and combined treatment (FENO + RES) (half the doses). All treatments were given orally from the 9(th) week till the end of experimental period. Body weight, oral glucose tolerance test (OGTT), liver index, glucose, insulin, insulin resistance (HOMA), serum and liver triglycerides (TGs), oxidative stress (liver MDA, GSH and SOD), serum AST, ALT, AST/ALT ratio and tumor necrosis factor-α (TNF-α) were measured. Additionally, hepatic gene expression of suppressor of cytokine signaling-3 (SOCS-3), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), malonyl CoA decarboxylase (MCD), transforming growth factor-ß1 (TGF-ß1) and adipose tissue genes expression of leptin and adiponectin were investigated. Liver sections were taken for histopathological examination and steatosis area were determined. RESULTS: Rats fed FED showed damaged liver, impairment of glucose tolerance, insulin resistance, oxidative stress and dyslipidemia. As for gene expression, there was a change in favor of dyslipidemia and nonalcoholic steatohepatitis (NASH) development. All treatment regimens showed some benefit in reversing the described deviations. Fructose caused deterioration in hepatic gene expression of SOCS-3, SREBP-1c, FAS, MDA and TGF-ß1 and in adipose tissue gene expression of leptin and adiponectin. Fructose showed also an increase in body weight, insulin resistance (OGTT, HOMA), serum and liver TGs, hepatic MDA, serum AST, AST/ALT ratio and TNF-α compared to control. All treatments improved SOCS-3, FAS, MCD, TGF-ß1 and leptin genes expression while only RES and FENO + RES groups showed an improvement in SREBP-1c expression. Adiponectin gene expression was improved only by RES. A decrease in body weight, HOMA, liver TGs, AST/ALT ratio and TNF-α were observed in all treatment groups. Liver index was increased in FENO and FENO + RES groups. Serum TGs was improved only by FENO treatment. Liver MDA was improved by RES and FENO + RES treatments. FENO + RES group showed an increase in liver GSH content. CONCLUSION: When resveratrol was given with half the dose of fenofibrate it improved NASH-related fructose-induced disturbances in gene expression similar to a full dose of fenofibrate.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fenofibrato/farmacologia , Frutose , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estilbenos/farmacologia , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Metabolismo Energético/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Resveratrol , Fatores de Tempo
13.
Eur J Pharmacol ; 773: 59-70, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26825546

RESUMO

Peroxisome proliferator-activated receptors (PPARs) gamma and alpha have been shown to play key roles in maintaining glucose and lipid homeostasis by acting as insulin sensitizers and lipid-lowering agents respectively, which would make them potential candidates for the treatment of non-alcoholic steatohepatitis (NASH) characterized by insulin resistance, hyperglycemia, and hypertriglyceridemia. The effects of pioglitazone, a PPAR-γ agonist, and fenofibrate, a PPAR-α agonist, as monotherapy and in combination on the expressions of key genes linked to the development of NASH were studied in rats with fructose-induced NASH. Fructose-enriched diet was given to rats for 12 weeks. Fenofibrate (100mg/kg), pioglitazone (4 mg/kg) and combined treatment with both in half doses were given. Body weight, liver index, insulin resistance indices, triglycerides, oxidative stress markers, AST/ALT ratio and TNF-α were measured. Additionally, hepatic genes expressions of SOCS-3, sterol regulatory element binding protein-1c, fatty acid synthase, malonyl CoA decarboxylase, TGF-ß1, and adipose tissue genes expressions of leptin and adiponectin were investigated. The combination of both drugs, in half doses, improved NASH-related disturbances similar to, or even better than, a full dose of fenofibrate alone possibly due to attenuating effects of pioglitazone on expression of genes responsible for insulin resistance, fatty acid synthesis and fibrosis in addition to correcting the balance between leptin and adiponectin. Histopathology confirmed the ability of this combination to decrease steatosis area and to normalize hepatic tissue structure. In Conclusion, dual activation of PPAR-γ and PPAR-α has remarkable effect in ameliorating NASH by modulation of some hepatic and adipose tissue genes expressions.


Assuntos
Fenofibrato/farmacologia , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Adiponectina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fenofibrato/uso terapêutico , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Insulina/sangue , Leptina/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Pioglitazona , Ratos , Ratos Wistar , Tiazolidinedionas/uso terapêutico , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA