Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Radiat Biol ; 100(2): 190-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37703210

RESUMO

Purpose: Imaging professionals are occupationally exposed to chronic ionizing radiation (IR) and non-ionizing radiation (NIR). This study aimed to investigate the influence of occupational radiation exposure on oxidative stress and antioxidant levels based on blood biomarkers in different hospital imaging professional groups.Materials and methods: The study groups included 66 imaging professionals occupationally exposed to IR (n = 58, 43 diagnostic radiography (G1), seven nuclear medicine (G2), eight radiation therapy (G3)), and NIR (n = 8, ultrasound imaging (G4)) and 60 non-exposed controls. Blood levels of superoxide (O2•-) as an index of oxidative stress, and the antioxidant activities of superoxide dismutase (SOD), glutathione ratio (GSH/GSSG), and catalase (CAT) were measured.Results: The blood values of O2•-, SOD, and CAT were significantly higher in imaging professionals occupationally exposed to radiation than in the control group (p < .05), while a significant decrease in the ratio of GSH/GSSG was observed (p < .05). The results from the NIR group were significantly higher compared to IR group.Conclusions: Based on these results, chronic exposure to radiation (IR and NIR) is associated with redox dysregulation that may result in damages to cellular biomolecules including lipids, proteins and DNA. Further studies are needed to determine the impact of redox dysregulation and the need for periodic examination among imaging professionals occupationally exposed to IR and NIR.


Assuntos
Antioxidantes , Glutationa , Humanos , Antioxidantes/metabolismo , Dissulfeto de Glutationa/metabolismo , Oxirredução , Glutationa/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Radiação Ionizante , Radiação não Ionizante
2.
Cancer Lett ; 579: 216468, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37940068

RESUMO

Bone metastatic disease of prostate cancer (PCa) is incurable and progression in bone is largely dictated by tumor-stromal interactions in the bone microenvironment. We showed previously that bone neutrophils initially inhibit bone metastatic PCa growth yet metastatic PCa becomes resistant to neutrophil response. Further, neutrophils isolated from tumor-bone lost their ability to suppress tumor growth through unknown mechanisms. With this study, our goal was to define the impact of metastatic PCa on neutrophil function throughout tumor progression and to determine the potential of neutrophils as predictive biomarkers of metastatic disease. Using patient peripheral blood polymorphonuclear neutrophils (PMNs), we identified that PCa progression dictates PMN cell surface markers and gene expression, but not cytotoxicity against PCa. Importantly, we also identified a novel phenomenon in which second generation androgen deprivation therapy (ADT) suppresses PMN cytotoxicity via increased transforming growth factor beta receptor I (TßRI). High dose testosterone and genetic or pharmacologic TßRI inhibition rescued androgen receptor-mediated neutrophil suppression and restored neutrophil anti-tumor immune response. These studies highlight the ability to leverage standard-care ADT to generate neutrophil anti-tumor responses against bone metastatic PCa.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Androgênios , Neutrófilos/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Biomedicines ; 11(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761021

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form, accounting for more than 90% of all pancreatic malignancies. In a previous study, we found that hypoxia and chemotherapy induced expression of Heme Oxygenase-1 (HO-1) in PDAC cells and tissues. Arsenic trioxide (ATO) is the first-line chemotherapeutic drug for acute promyelocytic leukemia (APL). ATO increases the generation of reactive oxidative species (ROS) and induces apoptosis in treated cells. The clinical use of ATO for solid tumors is limited due to severe systemic toxicity. In order to reduce cytotoxic side effects and resistance and improve efficacy, it has become increasingly common to use combination therapies to treat cancers. In this study, we used ATO-sensitive and less sensitive PDAC cell lines to test the effect of combining HO-1 inhibitors (SnPP and ZnPP) with ATO on HO-1 expression, cell survival, and other parameters. Our results show that ATO significantly induced the expression of HO-1 in different PDAC cells through the p38 MAPK signaling pathway. ROS production was confirmed using the oxygen-sensitive probes DCFH and DHE, N-acetyl cysteine (NAC), an ROS scavenger, and oxidized glutathione levels (GSSG). Both ATO and HO-1 inhibitors reduced PDAC cell survival. In combined treatment, inhibiting HO-1 significantly increased ATO cytotoxicity, disrupted the GSH cycle, and induced apoptosis as measured using flow cytometry. ATO and HO-1 inhibition modulated autophagy as shown by increased expression of autophagy markers ATG5, p62, and LC3B in PDAC cells. This increase was attenuated by NAC treatment, indicating that autophagy modulation was through an ROS-dependent mechanism. In conclusion, our work explored new strategies that could lead to the development of less toxic and more effective therapies against PDAC by combining increased cellular stress and targeting autophagy.

4.
Clin Exp Metastasis ; 39(4): 641-659, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604506

RESUMO

Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/secundário , Glutationa/metabolismo , Humanos , Masculino , Neutrófilos/patologia , Estresse Oxidativo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo
5.
Cancers (Basel) ; 13(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066839

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.

6.
Apoptosis ; 24(9-10): 730-744, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31243599

RESUMO

Piperlongumine (PL) is an alkaloid that inhibits glutathione S-transferase pi 1 (GSTP1) activity, resulting in elevated reactive oxygen species (ROS) levels and cancer-selective cell death. We aimed to identify stress-associated molecular responses to PL treatment in pancreatic ductal adenocarcinoma (PDAC) cells. GSTP1 directly interacts with JNK, which is activated by oxidative stress and can lead to decreased cancer cell proliferation and cell death. Therefore, we hypothesized that JNK pathways are activated in response to PL treatment. Our results show PL causes dissociation of GSTP1 from JNK; robust JNK, c-Jun, and early ERK activation followed by suppression; increased expression of cleaved caspase-3 and cleaved PARP; and nuclear translocation of Nrf2 and c-Myc in PDAC cells. Gene expression analysis revealed PL caused a > 20-fold induction of heme oxygenase-1 (HO-1), which we hypothesized was a survival mechanism for PDAC cells under enhanced oxidative stress. HO-1 knockout resulted in enhanced PL-induced PDAC cell death under hypoxic conditions. Similarly, high concentrations of the HO-1 inhibitor, ZnPP (10 µM), sensitized PDAC cells to PL; however, lower concentrations ZnPP (10 nM) and high or low concentrations of SnPP both protected PDAC cells from PL-induced cell death. Interestingly, the JNK inhibitor significantly blocked PL-induced PDAC cell death, Nrf-2 nuclear translocation, and HMOX-1 mRNA expression. Collectively, the results demonstrate JNK signaling contributes to PL-induced PDAC cell death, and at the same time, activates Nrf-2 transcription of HMOX-1 as a compensatory survival mechanism. These results suggest that elevating oxidative stress (using PL) while at the same time impairing antioxidant capacity (inhibiting HO-1) may be an effective therapeutic approach for PDAC.


Assuntos
Apoptose/efeitos dos fármacos , Dioxolanos/farmacologia , Heme Oxigenase-1/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas , Alcaloides/farmacologia , Alcaloides/toxicidade , Linhagem Celular Tumoral/metabolismo , Dioxolanos/toxicidade , Heme Oxigenase-1/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Neoplasias Pancreáticas
7.
Antioxidants (Basel) ; 8(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609664

RESUMO

Studies have shown an increased risk for a variety of cancers, specifically brain cancer, in healthcare workers occupationally exposed to ionizing radiation. Although the mechanisms mediating these phenomena are not fully understood, ionizing radiation-mediated elevated levels of reactive oxygen species (ROS), oxidative DNA damage, and immune modulation are likely involved. A group of 20 radiation exposed workers and 40 sex- and age-matched non-exposed control subjects were recruited for the study. We measured superoxide (O2•-) levels in whole blood of healthcare workers and all other measurements of cytokines, oxidative DNA damage, extracellular superoxide dismutase (EcSOD) activity and reduced/oxidized glutathione ratio (GSH/GSSG) in plasma. Levels of O2•- were significantly higher in radiation exposed workers compared to control. Similarly, a significant increase in the levels of interleukin (IL)-6, IL-1α and macrophage inflammatory protein (MIP)-1α in radiation exposed workers compared to control was observed, while there was no significance difference in the other 27 screened cytokines. A significant positive correlation was found between MIP-1α and O2•- levels with no correlation in either IL-6 or IL-1α. Further, a dose-dependent relationship with significant O2•- production and immune alterations in radiation exposed workers was demonstrated. There was no statistical difference between the groups in terms of oxidative DNA damage, GSH/GSSG levels, or EcSOD activity. Although the biologic significance of cytokines alterations in radiation exposed workers is unclear, further studies are needed for determining the underlying mechanism of their elevation.

8.
Transl Res ; 207: 56-69, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653942

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and has one of the worst prognoses leading to a meager 5-year survival rate of ∼8%. Chemotherapy has had limited success in extending the life span of patients with advanced PDAC due to poor tumor perfusion and hypoxia-induced resistance. Hypoxia reprograms the gene expression profile and upregulates the expression of multiple genes including heme oxygenase-1 (HO-1), which provide survival advantage to PDAC cells. However, the relationships between HO-1, hypoxia, and response to chemotherapy is unclear. Our results showed that hypoxia upregulates the expression of HO-1 in PDAC cells, and HO-1 inhibition using the HO-1 inhibitors zinc protoporphyrin, tin protoporphyrin IX (SnPP), and HO-1 knockout using CRISPR/Cas9 suppresses the proliferation of PDAC cells under hypoxia and sensitize them to gemcitabine under in vitro conditions. Treating orthotopic tumors with SnPP, or SnPP in combination with gemcitabine, significantly reduced the weight of pancreatic tumors (P < 0.05), decreased metastasis and improved the efficacy of gemcitabine treatment (P < 0.05). Mechanistically, inhibition of HO-1 increased the production of reactive oxygen species as demonstrated by increased dihydroethidium, and Mitosox, disrupted glutathione cycle, and enhanced apoptosis. There was significant increase in cleaved caspase-3 staining in tumors after combined treatment with SnPP and gemcitabine comparing to control or gemcitabine alone. In addition, inhibiting HO-1 reduced expression of stemness markers (CD133, and CD44) as compared to control or gemcitabine. Overall, our study may present a novel therapeutic regimen that might be adopted for the treatment of PDAC patients.


Assuntos
Desoxicitidina/análogos & derivados , Heme Oxigenase-1/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Feminino , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Camundongos Nus , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Gencitabina
9.
Antioxidants (Basel) ; 6(4)2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149089

RESUMO

Communication between the nucleus and mitochondrion could coordinate many cellular processes. While the mechanisms regulating this communication are not completely understood, we hypothesize that cell cycle checkpoint proteins coordinate the cross-talk between nuclear and mitochondrial functions following oxidative stress. Human normal skin fibroblasts, representative of the G2-phase, were irradiated with 6 Gy of ionizing radiation and assayed for cyclin B1 translocation, mitochondrial function, reactive oxygen species (ROS) levels, and cytotoxicity. In un-irradiated controls, cyclin B1 was found primarily in the nucleus of G2-cells. However, following irradiation, cyclin B1 was excluded from the nucleus and translocated to the cytoplasm and mitochondria. These observations were confirmed further by performing transmission electron microscopy and cell fractionation assays. Cyclin B1 was absent in mitochondria isolated from un-irradiated G2-cells and present in irradiated G2-cells. Radiation-induced translocation of cyclin B1 from the nucleus to the mitochondrion preceded changes in the activities of mitochondrial proteins, that included decreases in the activities of aconitase and the mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), and increases in complex II activity. Changes in the activities of mito-proteins were followed by an increase in dihydroethidium (DHE) oxidation (indicative of increased superoxide levels) and loss of the mitochondrial membrane potential, events that preceded the restart of the stalled cell cycle and subsequently the loss in cell viability. Comparable results were also observed in un-irradiated control cells overexpressing mitochondria-targeted cyclin B1. These results indicate that MnSOD and cyclin B1 coordinate a cross-talk between nuclear and mitochondrial functions, to regulate a mito-checkpoint during the cell cycle response to oxidative stress.

10.
Tumour Biol ; 39(10): 1010428317726184, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29022497

RESUMO

It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (<80%) as compared with controls. Survivin expression significantly increased at 24 h post treatment with 5, 10, or 20 nM; however, that of γ-H2AX increased only after survivin levels dropped and only at the 20 nM E2 dose. Minimal upregulation and splitting of caspase 9 was only evident in cells treated with 20 nM E2; no changes in caspase 3 expression were evident. Although Annexin V staining studies showed that E2 treatment did not induce apoptosis, scanning electron microscopy studies showed marked membrane blebbing at 20 nM/48 h of E2. These findings suggest that estrogen treatment disrupts intracellular iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.


Assuntos
Estrogênios/metabolismo , Sobrecarga de Ferro/genética , Ferro/metabolismo , Apoptose/genética , Proteínas de Transporte de Cátions/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Histonas/genética , Humanos , Fator 1 Induzível por Hipóxia/genética , Sobrecarga de Ferro/metabolismo , Células MCF-7 , Estresse Oxidativo/genética , Superóxido Dismutase/genética
11.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630072

RESUMO

Pseudomonasaeruginosa causes lung infections in patients with cystic fibrosis (CF). The Pseudomonas quinolone signal (PQS) compound is a secreted P. aeruginosa virulence factor that contributes to the pathogenicity of P. aeruginosa We were able to detect PQS in sputum samples from CF patients infected with P. aeruginosa but not in samples from uninfected patients. We then tested the hypothesis that PQS induces oxidative stress in host cells by determining the ability of PQS to induce the production of reactive oxygen species (ROS) in lung epithelial cells (A549 and primary normal human bronchial epithelial [NHBE]) cells and macrophages (J774A.1 and THP-1). ROS production induced by PQS was detected with fluorescent probes (dichlorodihydrofluorescein diacetate, dihydroethidium, and MitoSOX Red) in conjunction with confocal microscopy and flow cytometry. PQS induced ROS production in lung epithelial (A549 and NHBE) cells and macrophages (J774A.1 and THP-1 cells). NHBE cells were sensitive to PQS concentrations as low as 500 ng/ml. PQS significantly induced early apoptosis (P < 0.05, n = 6) in lung epithelial cells, as measured by annexin/propidium iodide detection by flow cytometry. However, no change in apoptosis upon PQS treatment was seen in J774A.1 cells. Heme oxygenase-1 (HO-1) protein is an antioxidant enzyme usually induced by oxidative stress. Interestingly, incubation with PQS significantly reduced HO-1 and NrF2 expression in A549 and NHBE cells but increased HO-1 expression in J774A.1 cells (P < 0.05, n = 3), as determined by immunoblotting and densitometry. These PQS effects on host cells could play an important role in the pathogenicity of P. aeruginosa infections.


Assuntos
Inibidores Enzimáticos/metabolismo , Células Epiteliais/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Estresse Oxidativo , Quinolonas/metabolismo , Animais , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/enzimologia , Citometria de Fluxo , Humanos , Macrófagos/química , Macrófagos/enzimologia , Camundongos , Microscopia Confocal , Espécies Reativas de Oxigênio/análise
12.
Cytokine ; 95: 70-79, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28237876

RESUMO

Infection with Mycobacterium tuberculosis (M.tb) is associated with increased deaths worldwide. Alveolar macrophages (AMs) play a critical role in host defense against infection with this pathogen. In this work we tested the hypothesis that passive transfer of normal AMs, IFN-γ activated AMs, or macrophages transduced to over-express IFN-γ into the lungs of immunosuppressed SCID mice, where resident macrophages are present but not functional, would enhance alveolar immunity and increase clearance of pulmonary M.tb infection. Accordingly, SCID mice were infected with M.tb intratracheally (I.T.), following which they received either control macrophages or macrophages overexpressing IFN-γ (J774A.1). The extent of M.tb infection was assessed at 30days post-M.tb infection. SCID mice administered macrophages over-expressing IFN-γ showed a significant decrease in M.tb burden and increased survival compared to J774A.1 control macrophages or untreated mice. This was further associated with a significant increase in IFN-γ and TNF-α mRNA and protein expression, as well as NF-κB (p65) mRNA, in the lungs. The increase in IFN-γ and TNF-α lung levels was inversely proportional to the number of M.tb organisms recovered. These results provide evidence that administration of macrophages overexpressing IFN-γ inhibit M.tb growth in vivo and may enhance host defense against M.tb infection.


Assuntos
Transferência Adotiva , Interferon gama/genética , Macrófagos/transplante , Tuberculose Pulmonar/terapia , Animais , Resistência à Doença , Suscetibilidade a Doenças , Tolerância Imunológica , Interferon gama/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Camundongos SCID , Fagocitose , Tuberculose Pulmonar/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Physiol Rep ; 4(21)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27856731

RESUMO

Mycobacterium avium (M. avium) causes significant pulmonary infection, especially in immunocompromised hosts. Alveolar macrophages (AMs) represent the first line of host defense against infection in the lung. Interferon gamma (IFN-γ) activation of AMs enhances in vitro killing of pathogens such as M. avium We hypothesized that airway delivery of AMs into the lungs of immunodeficient mice infected with M. avium will inhibit M. avium growth in the lung and that this macrophage function is in part IFN-γ dependent. In this study, normal BALB/c and BALB/c SCID mice received M. avium intratracheally while on mechanical ventilation. After 30 days, M. avium numbers increased in a concentration-dependent manner in SCID mice compared with normal BALB/c mice. Airway delivery of IFN-γ-activated BALB/c AMs or J774A.1 macrophages overexpressing IFN-γ into the lungs of SCID mice resulted in a significant decrease in M. avium growth (P < 0.01, both comparisons) and limited dissemination to other organs. In addition, airway delivery of IFN-γ activated AMs and macrophages overexpressing IFN-γ increased the levels of IFN-γ and TNF-α in SCID mice. A similar protective effect against M. avium infection using J774A.1 macrophages overexpressing IFN-γ was observed in IFN-γ knockout mice. These data suggest that administration of IFN-γ activated AMs or macrophages overexpressing IFN-γ may partially restore local alveolar host defense against infections like M. avium, even in the presence of ongoing systemic immunosuppression.


Assuntos
Interferon gama/administração & dosagem , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos SCID/imunologia , Infecções por Mycobacterium/imunologia , Mycobacterium avium/efeitos dos fármacos , Animais , Tolerância Imunológica/efeitos dos fármacos , Interferon gama/biossíntese , Interferon gama/genética , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
14.
Redox Rep ; 21(3): 139-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26817988

RESUMO

OBJECTIVES: Reactive oxygen species (ROS), including superoxide (O2(•-)), play an important role in the biological effects of ionizing radiation. The human body has developed different antioxidant systems to defend against excessive levels of ROS. The aim of the present study is to investigate the redox status changes in the blood of radiologic technologists and compare these changes to control individuals. METHODS: We enrolled 60 medical workers: 20 occupationally exposed to ionizing radiation (all radiologic technologists), divided in three subgroups: conventional radiography (CR), computerized tomography (CT), and interventional radiography (IR) and 40 age- and gender-matched unexposed controls. Levels of O2(•-) and malondialdehyde (MDA) in blood were measured as an index of redox status, as were the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase. Redox status was also assessed by measuring levels of reduced and oxidized glutathione (GSH, GSSG, respectively). RESULTS: Levels of O2(•-) and MDA, and SOD activity in the blood of IR and CT-exposed subjects were significantly higher than both the CR-exposed subjects and control individuals. However, there were no statistically significant differences in the levels of catalase, GSH and ratio of GSH/GSSG between exposed workers and control individuals. DISCUSSION: This study suggests that healthcare workers in CT and IR occupationally exposed to radiation have an elevated circulating redox status as compared to unexposed individuals.


Assuntos
Radiação Ionizante , Antioxidantes/metabolismo , Catalase/metabolismo , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Malondialdeído/metabolismo , Exposição Ocupacional/efeitos adversos , Oxirredução/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
15.
Antimicrob Agents Chemother ; 59(8): 4826-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033732

RESUMO

The rapidly growing nontuberculous mycobacterial species Mycobacterium abscessus has recently emerged as an important pathogen in patients with cystic fibrosis (CF). Treatment options are limited because of the organism's innate resistance to standard antituberculous antibiotics, as well as other currently available antibiotics. New antibiotic approaches to the treatment of M. abscessus are urgently needed. The goal of the present study was to assess the growth-inhibitory activity of different Ga compounds against an American Type Culture Collection (ATCC) strain and clinical isolates of M. abscessus obtained from CF and other patients. In our results, using Ga(NO3)3 and all of the other Ga compounds tested inhibited the growth of ATCC 19977 and clinical isolates of M. abscessus. Inhibition was mediated by disrupting iron uptake, as the addition of exogenous iron (Fe) restored basal growth. There were modest differences in inhibition among the isolates for the same Ga chelates, and for most Ga chelates there was only a slight difference in potency from Ga(NO3)3. In contrast, Ga-protoporphyrin completely and significantly inhibited the ATCC strain and clinical isolates of M. abscessus at much lower concentrations than Ga(NO3)3. In in vitro broth culture, Ga-protoporphyrin was more potent than Ga(NO3)3. When M. abscessus growth inside the human macrophage THP-1 cell line was assessed, Ga-protoporphyrin was >20 times more active than Ga(NO3)3. The present work suggests that Ga exhibits potent growth-inhibitory capacity against the ATCC strain, as well as against antibiotic-resistant clinical isolates of M. abscessus, including the highly antibiotic-resistant strain MC2638. Ga-based therapy offers the potential for further development as a novel therapy against M. abscessus.


Assuntos
Antibacterianos/farmacologia , Gálio/farmacologia , Micobactérias não Tuberculosas/efeitos dos fármacos , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico
16.
Asian Pac J Cancer Prev ; 16(8): 3213-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25921122

RESUMO

BACKGROUND: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. MATERIALS AND METHODS: T47D human breast cancer cells were treated with 2-deoxy- D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent- phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. RESULTS: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. CONCLUSIONS: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Butionina Sulfoximina/farmacologia , Desoxiglucose/farmacologia , Doxorrubicina/farmacologia , Adesões Focais/efeitos dos fármacos , Actinas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antimetabólitos/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Adesão Celular , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Cicatrização/efeitos dos fármacos
17.
Redox Biol ; 4: 328-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25638774

RESUMO

Mycobacterium abscessus (M.abs) is a rapidly growing mycobacterial species that infects macrophages, and is an important pathogen in patients with cystic fibrosis. We studied the early stages of M.abs infection of macrophages, with emphasis on the role of heme-oxygenase-1 (HO-1) in this infection. THP-1 cells were activated using TPA into macrophage-like cells and infected with M.abs for different time points. M.abs infection robustly induced HO-1 expression in the THP-1 cells. Production of HO-1 was p38 MAPK-dependent, as p38 inhibitors suppressed HO-1 induction. Pretreatment with HO-1 inhibitors tin-protoporphyrin (SnPP) significantly inhibited M.abs growth inside macrophages. Furthermore, inhibiting HO-1 using HO-1 siRNA or the HO-1 upstream signaling molecule; Nrf2 using Nrf2 siRNA resulted in similar inhibition of M.abs. In contrast, inducing HO-1 did not increase M.abs intracellular growth above control. Products of HO-1 metabolism of heme are bilirubin, biliverdin, carbon monoxide (CO) and iron. The addition of either bilirubin or biliverdin, but not CO, completely restored the SnPP inhibitory effect and partially that with HO-1 siRNA. To understand the mechanisms, we used Syto-62 labeled M.abs to infect macrophages. Interestingly, HO-1 inhibition promoted M.abs-containing phagosome fusion with lysosomes, which should enhance M.abs killing. M.abs infection enhanced THP-1 ROS production as demonstrated by increased DHE, DCF fluorescence, and EPR signal. HO-1 inhibition further increased ROS production in infected macrophages. Our results indicate that HO-1 induction is important for M.abs growth during the early stages of infection, and that the HO-1 products bilirubin and biliverdin, perhaps through modulation of intracellular ROS levels, may be involved.


Assuntos
Heme Oxigenase-1/genética , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Mycobacterium/fisiologia , Fator 2 Relacionado a NF-E2/genética , Bilirrubina/farmacologia , Biliverdina/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática , Regulação da Expressão Gênica , Heme Oxigenase-1/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Fusão de Membrana/efeitos dos fármacos , Metaloporfirinas/farmacologia , Viabilidade Microbiana , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Protoporfirinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Cancer Immunol Res ; 2(11): 1080-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25080445

RESUMO

Despite the strides that immunotherapy has made in mediating tumor regression, the clinical effects are often transient, and therefore more durable responses are still needed. The temporary nature of the therapy-induced immune response can be attributed to tumor immune evasion mechanisms, mainly the effect of suppressive immune cells and, in particular, regulatory T cells (Treg). Although the depletion of Tregs has been shown to be effective in enhancing immune responses, selective depletion of these suppressive cells without affecting other immune cells has not been very successful, and new agents are sought. We found that PI3K-Akt pathway inhibitors selectively inhibit Tregs with minimal effect on conventional T cells (Tconv). Our results clearly show selective in vitro inhibition of activation (as represented by a decrease in downstream signaling) and proliferation of Tregs in comparison with Tconvs when treated with different Akt and PI3K inhibitors. This effect has been observed in both human and murine CD4 T cells. In vivo treatment with these inhibitors resulted in a significant and selective reduction in Tregs in both naïve and tumor-bearing mice. Furthermore, these PI3K-Akt inhibitors led to a significant therapeutic antitumor effect, which was shown to be Treg dependent. Here, we report the use of PI3K-Akt pathway inhibitors as potent agents for the selective depletion of suppressive Tregs. We show that these inhibitors are able to enhance the antitumor immune response and are therefore promising clinical reagents for Treg depletion.


Assuntos
Ativação Linfocitária/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
19.
Microb Pathog ; 65: 21-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067451

RESUMO

The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.


Assuntos
Células Dendríticas/microbiologia , Ferro/metabolismo , Mycobacterium tuberculosis/metabolismo , Transporte Biológico , Células Cultivadas , Humanos , Lactoferrina/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Transferrina/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia
20.
Antimicrob Agents Chemother ; 57(12): 6074-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24060870

RESUMO

Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga(3+) from Fe(3+). Unlike Fe(3+), Ga(3+) cannot be physiologically reduced to Ga(2+). Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans.


Assuntos
Antimetabólitos/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Gálio/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Aconitato Hidratase/antagonistas & inibidores , Aconitato Hidratase/metabolismo , Animais , Antimetabólitos/metabolismo , Antituberculosos/metabolismo , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Gálio/metabolismo , Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/microbiologia , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Baço/efeitos dos fármacos , Baço/microbiologia , Baço/patologia , Análise de Sobrevida , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/mortalidade , Tuberculose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA