RESUMO
The periodontium comprising periodontal ligament (PDL), gingiva, and epithelium play crucial roles in maintaining tooth integrity and function. Understanding tissue cellular composition and gene expression is crucial for illuminating periodontal pathophysiology. This study aimed to identify tissue-specific markers via scRNA-Seq. Primary human PDL, gingiva, and epithelium tissues (n = 7) were subjected to cell hashing and sorting. scRNA-Seq library preparation using 10× Genomics protocol and Illumina sequencing was conducted. The analysis was performed using Cellranger (v3.1.0), with downstream analysis via R packages Seurat (v5.0.1) and SCORPIUS (v1.0.9). Investigations identified eight distinct cellular clusters, revealing the ubiquitous presence of epithelial and gingival cells. PDL cells evolved in two clusters with numerical superiority. The other clusters showed varied predominance regarding gingival and epithelial cells or an equitable distribution of both. The cluster harboring most cells mainly consisted of PDL cells and was present in all donors. Some of the other clusters were also tissue-inherent, while the presence of others was environmentally influenced, revealing variability across donors. Two clusters exhibited genetic profiles associated with tissue development and cellular integrity, respectively, while all other clusters were distinguished by genes characteristic of immune responses. Developmental trajectory analysis uncovered that PDL cells may develop after epithelial and gingival cells, suggesting the inherent PDL cell-dominated cluster as a final developmental stage. This single-cell RNA sequencing study delineates the hierarchical organization of periodontal tissue development, identifies tissue-specific markers, and reveals the influence of environmental factors on cellular composition, advancing our understanding of periodontal biology and offering potential insights for therapeutic interventions.
Assuntos
Gengiva , Ligamento Periodontal , Análise de Célula Única , Transcriptoma , Humanos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Gengiva/metabolismo , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , Epitélio/metabolismo , Células Epiteliais/metabolismo , Feminino , MasculinoRESUMO
The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.
Assuntos
Ligamento Periodontal , Adulto , Feminino , Humanos , Masculino , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única/métodos , TranscriptomaRESUMO
Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.
Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Leucemia Mieloide Aguda , Animais , Camundongos , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismoRESUMO
SIGNIFICANCE STATEMENT: Treatment of acute, crescentic glomerulonephritis (GN) consists of unspecific and potentially toxic immunosuppression. T cells are central in the pathogenesis of GN, and various checkpoint molecules control their activation. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown potential for restraining inflammation in other T-cell-mediated disease models. To investigate its role in GN in a murine model of crescentic nephritis, the authors induced nephrotoxic nephritis in BTLA-deficient mice and wild-type mice. They found that BTLA has a renoprotective role through suppression of local Th1-driven inflammation and expansion of T regulatory cells and that administration of an agonistic anti-BTLA antibody attenuated experimental GN. These findings suggest that antibody-based modulation of BTLA may represent a treatment strategy in human glomerular disease. BACKGROUND: Modulating T-lymphocytes represents a promising targeted therapeutic option for glomerulonephritis (GN) because these cells mediate damage in various experimental and human GN types. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown its potential to restrain inflammation in other T-cell-mediated disease models. Its role in GN, however, has not been investigated. METHODS: We induced nephrotoxic nephritis (NTN), a mouse model of crescentic GN, in Btla -deficient ( BtlaKO ) mice and wild-type littermate controls and assessed disease severity using functional and histologic parameters at different time points after disease induction. Immunologic changes were comprehensively evaluated by flow cytometry, RNA sequencing, and in vitro assays for dendritic cell and T-cell function. Transfer experiments into Rag1KO mice confirmed the observed in vitro findings. In addition, we evaluated the potential of an agonistic anti-BTLA antibody to treat NTN in vivo . RESULTS: The BtlaKO mice developed aggravated NTN, driven by an increase of infiltrating renal Th1 cells. Single-cell RNA sequencing showed increased renal T-cell activation and positive regulation of the immune response. Although BTLA-deficient regulatory T cells (Tregs) exhibited preserved suppressive function in vitro and in vivo , BtlaKO T effector cells evaded Treg suppression. Administration of an agonistic anti-BTLA antibody robustly attenuated NTN by suppressing nephritogenic T effector cells and promoting Treg expansion. CONCLUSIONS: In a model of crescentic GN, BTLA signaling effectively restrained nephritogenic Th1 cells and promoted regulatory T cells. Suppression of T-cell-mediated inflammation by BTLA stimulation may prove relevant for a broad range of conditions involving acute GN.
Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Nefrite , Camundongos , Humanos , Animais , Proteínas de Checkpoint Imunológico , Glomerulonefrite/patologia , Glomerulonefrite Membranoproliferativa/complicações , Inflamação/complicações , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND AND AIMS: Human innate lymphoid cells (ILCs) are critically involved in the modulation of homeostatic and inflammatory processes in various tissues. However, only little is known about the composition of the intrahepatic ILC pool and its potential role in chronic liver disease. Here, we performed a detailed characterization of intrahepatic ILCs in both healthy and fibrotic livers. APPROACH AND RESULTS: A total of 50 livers (nonfibrotic = 22, and fibrotic = 29) were analyzed and compared with colon and tonsil tissue (each N = 14) and peripheral blood (N = 32). Human intrahepatic ILCs were characterized ex vivo and on stimulation using flow cytometry and single-cell RNA sequencing. ILC differentiation and plasticity were analyzed by both bulk and clonal expansion experiments. Finally, the effects of ILC-derived cytokines on primary human HSteCs were studied. Unexpectedly, we found that an "unconventional" ILC3-like cell represented the major IL-13-producing liver ILC subset. IL-13 + ILC3-like cells were specifically enriched in the human liver, and increased frequencies of this cell type were found in fibrotic livers. ILC3-derived IL-13 production induced upregulation of proinflammatory genes in HSteCs, indicating a potential role in the regulation of hepatic fibrogenesis. Finally, we identified KLRG1-expressing ILC precursors as the potential progenitor of hepatic IL-13 + ILC3-like cells. CONCLUSIONS: We identified a formerly undescribed subset of IL-13-producing ILC3-like cells that is enriched in the human liver and may be involved in the modulation of chronic liver disease.
Assuntos
Interleucina-13 , Linfócitos , Humanos , Interleucina-13/metabolismo , Imunidade Inata , Cirrose Hepática/metabolismoRESUMO
Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.
Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-jun , Trombospondinas , Quinases da Família src , Humanos , Fibroblastos/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Leucemia Linfocítica Crônica de Células B/genética , Transdução de Sinais , Quinases da Família src/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Trombospondinas/metabolismoRESUMO
A key challenge for the discovery of novel molecular targets and therapeutics against pediatric bone metastatic disease is the lack of bona fide in vitro cell models. Here, we show that a beta-tricalcium phosphate (ß-TCP) multicellular 3D in vitro bone microtissue model reconstitutes key phenotypic and transcriptional patterns of native metastatic tumor cells while promoting their stemness and proinvasive features. Comparing planar with interconnected channeled scaffolds, we identified geometry as a dominant orchestrator of proangiogenic traits in neuroblastoma tumor cells. On the other hand, the ß-TCP-determined gene signature was DNA replication related. Jointly, the geometry and chemical impact of ß-TCP revealed a prometastatic landscape of the engineered tumor microenvironment. The proposed 3D multicellular in vitro model of pediatric bone metastatic disease may advance further analysis of the molecular, genetic and metabolic bases of the disease and allow more efficient preclinical target validations.
RESUMO
Group 1 innate lymphoid cells (ILCs) comprise a heterogeneous family of cytotoxic natural killer (NK) cells and ILC1s. We identify a population of "liver-type" ILC1s with transcriptional, phenotypic, and functional features distinct from those of conventional and liver-resident NK cells as well as from other previously described human ILC1 subsets. LT-ILC1s are CD49a+CD94+CD200R1+, express the transcription factor T-BET, and do not express the activating receptor NKp80 or the transcription factor EOMES. Similar to NK cells, liver-type ILC1s produce IFN-γ, TNF-α, and GM-CSF; however, liver-type ILC1s also produce IL-2 and lack perforin and granzyme-B. Liver-type ILC1s are expanded in cirrhotic liver tissues, and they can be produced from blood-derived ILC precursors in vitro in the presence of TGF-ß1 and liver sinusoidal endothelial cells. Cells with similar signature and function can also be found in tonsil and intestinal tissues. Collectively, our study identifies and classifies a population of human cross-tissue ILC1s.
Assuntos
Imunidade Inata , Linfócitos , Humanos , Células Endoteliais , Células Matadoras Naturais , Fígado , Fatores de Transcrição , Análise de Sequência de RNARESUMO
Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.
Assuntos
Cistos , Rim Policístico Autossômico Dominante , Adulto , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Organoides , Rim , Antígeno CD24/genéticaRESUMO
Lipocalin 2 (LCN2), an acute-phase protein produced during acute liver injury, plays an important role in the innate immune response against bacterial infection via iron scavenging. LCN2 further influences neutrophil development and physiology leading to increased inflammatory responses. We investigated the roles of LCN2 in chronic inflammation and fibrosis, using repeated carbon tetrachloride (CCl4) in mineral-oil injection. Surprisingly, mice treated with the mineral oil vehicle alone showed liver inflammation, evidenced by neutrophil and monocyte-macrophage infiltration. Fluorescence-activated cell sorting (FACS) of isolated liver leukocytes showed significantly high CD45+ leukocyte concentrations in CCl4 mice, but no difference of Ly6G+ neutrophils between mineral oil and CCl4 application. Liver CD11b+ F4/80+ cells counted higher in CCl4 mice, but the proportions of Gr1high, an indicator of inflammation, were significantly higher in mineral oil groups. Liver myeloperoxidase (MPO), expressed in neutrophils and monocytes, showed higher levels in wild type mice compared to Lcn2-/- in both mineral-oil and CCl4 treated groups. Hepatic and serum LCN2 levels were remarkably higher in the mineral oil-injected wild type group compared to the CCl4. Wild type animals receiving mineral oil showed significantly higher inflammatory cytokine- and chemokine mRNA levels compared to Lcn2-/- mice, with no differences in the CCl4 treated groups. RNA sequencing (RNA-Seq) confirmed significant downregulation of gene sets involved in myeloid cell activation and immune responses in Lcn2 null mice receiving chronic mineral oil versus wild-type. We observed significant upregulation of gene sets and proteins involved in cell cycle DNA replication, with downregulation of collagen-containing extracellular matrix genes in Lcn2-/- mice receiving CCl4, compared to the wild type. Consequently, the wild type mice developed slightly more liver fibrosis compared to Lcn2-/- mice, evidenced by higher levels of collagen type I in the CCl4 groups and no liver fibrosis in mineral oil-treated mice. Our findings indicate that serum and hepatic LCN2 levels correlate with hepatic inflammation rather than fibrosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/sangue , Lipocalina-2/sangue , Cirrose Hepática/sangue , Animais , Tetracloreto de Carbono , Colágeno Tipo I/metabolismo , Feminino , Fígado/imunologia , Fígado/metabolismo , Cirrose Hepática/etiologia , Camundongos Endogâmicos C57BL , Óleo Mineral , Infiltração de NeutrófilosRESUMO
Key aspects of intestinal T cells, including their antigen specificity and their selection by the microbiota and other intestinal antigens, as well as the contribution of individual T cell clones to regulatory and effector functions, remain unresolved. Here we tracked adoptively transferred T cell populations to specify the interrelation of T cell receptor repertoire and the gut antigenic environment. We show that dominant TCRα clonotypes were shared between interferon-γ- and interleukin-17-producing but not regulatory Foxp3+ T cells. Identical TCRα clonotypes accumulated in the colon of different individuals, whereas antibiotics or defined colonization correlated with the expansion of distinct expanded T cell clonotypes. Our results demonstrate key aspects of intestinal CD4+ T cell activation and suggest that few microbial species exert a dominant effect on the intestinal T cell repertoire during colitis. We speculate that dominant proinflammatory T cell clones might provide a therapeutic target in human inflammatory bowel disease.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Colite/etiologia , Colite/metabolismo , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transferência Adotiva , Biomarcadores , Colite/patologia , Colite/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Psoriasis is a chronic skin disease affecting 2-3% of the global population. The proinflammatory IL-17A is a key cytokine in psoriasis. Accumulating evidence has revealed that IL-36γ plays also a pathogenic role. To understand more precisely the role of the IL-17A-IL-36γ cytokine network in skin pathology, we used an ear injection model. We injected IL-17A or IL-36γ alone and in combination into the ear pinnae of mice. This resulted in a significant increase in ear thickness measured over time. Histological evaluation of IL-17A + IL-36γ-treated skin showed a strong acanthosis, hyperparakeratosis and infiltration of neutrophils. The same histological features were found in mice after injection of IL-36γ alone, but to a lesser extent. IL-17A alone was not able to induce psoriasis-like changes. Genes encoding proteins of the S100 family, antimicrobial peptides and chemo-attractants for neutrophils were upregulated in the IL-17A + IL-36γ group. A much weaker expression was seen after the injection of each cytokine alone. These results strengthen the hypothesis that IL-17A and IL-36γ drive psoriatic inflammation via a synergistic interaction. Our established intradermal ear injection model can be utilized in the future to monitor effects of various inhibitors of this cytokine network.
RESUMO
Numerous environmental pollutants have the potential to accumulate in sediments, and among them are endocrine-disrupting chemicals (EDCs). It is well documented that water-borne exposure concentrations of some potent EDCs, more specifically estrogenic- active compounds (ECs), can impair the reproduction of fish. In contrast, little is known about the bioavailability and effects of sediment-associated ECs on fish. Particularly, when sediments are disturbed, e.g., during flood events, chemicals may be released from the sediment and become bioavailable. The main objectives of this study were to evaluate a) whether ECs from the sediment become bioavailable to fish when the sediment is suspended, and b) whether such exposure leads to endocrine responses in fish. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed over 21 days to constantly suspended sediments in the following treatments: i) a contaminated sediment from the Luppe River, representing a "hotspot" for EC accumulation, ii) a reference sediment (exhibiting only background contamination), iii) three dilutions, 2-, 4- and 8-fold of Luppe sediment diluted with the reference sediment, and iv) a water-only control. Measured estrogenic activity using in vitro bioassays as well as target analysis of nonylphenol and estrone via LC-MS/MS in sediment, water, fish plasma, as well as bile samples, confirmed that ECs became bioavailable from the sediment during suspension. ECs were dissolved in the water phase, as indicated by passive samplers, and were readily taken up by the exposed trout. An estrogenic response of fish to Luppe sediment was indicated by increased abundance of transcripts of typical estrogen responsive genes, i.e. vitelline envelope protein α in the liver and vitellogenin induction in the skin mucus. Altered gene expression profiles of trout in response to suspended sediment from the Luppe River suggest that in addition to ECs a number of other contaminants such as dioxins, polychlorinated biphenyls (PCBs) and heavy metals were remobilized during suspension. The results of the present study demonstrated that sediments not only function as a sink for ECs but can turn into a significant source of pollution when sediments are resuspended as during flood-events. This highlights the need for sediment quality criteria considering bioavailability sediment-bound contaminants in context of flood events.
Assuntos
Estrogênios/toxicidade , Sedimentos Geológicos/química , Oncorhynchus mykiss/metabolismo , Animais , Disponibilidade Biológica , Exposição Ambiental , Feminino , Ontologia Genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
OBJECTIVE: Bone marrow-derived myeloid cells accumulate in the liver as monocytes and macrophages during the progression of obesity-related non-alcoholic fatty liver disease (NAFLD) to steatohepatitis (NASH). Myeloid cells comprise heterogeneous subsets, and dietary overnutrition may affect macrophages in the liver and bone marrow. We therefore aimed at characterising in depth the functional adaptations of myeloid cells in fatty liver. DESIGN: We employed single-cell RNA sequencing to comprehensively assess the heterogeneity of myeloid cells in the liver and bone marrow during NAFLD, by analysing C57BL/6 mice fed with a high-fat, high-sugar, high-cholesterol 'Western diet' for 16 weeks. We also characterised NAFLD-driven functional adaptations of macrophages in vitro and their functional relevance during steatohepatitis in vivo. RESULTS: Single-cell RNA sequencing identified distinct myeloid cell clusters in the liver and bone marrow. In both compartments, monocyte-derived populations were largely expanded in NASH-affected mice. Importantly, the liver myeloid compartment adapted a unique inflammatory phenotype during NAFLD progression, exemplarily characterised by downregulated inflammatory calprotectin (S100A8/A9) in macrophage and dendritic cell subsets. This distinctive gene signature was also found in their bone marrow precursors. The NASH myeloid phenotype was principally recapitulated by in vitro exposure of bone marrow-derived macrophages with fatty acids, depended on toll-like receptor 4 signalling and defined a characteristic response pattern to lipopolysaccharide stimulation. This imprinted and stable NASH myeloid immune phenotype functionally determined inflammatory responses following acute liver injury (acetaminophen poisoning) in vivo. CONCLUSION: Liver myeloid leucocytes and their bone marrow precursors adapt a common and functionally relevant inflammatory signature during NAFLD progression.
Assuntos
Medula Óssea/patologia , Fígado/patologia , Células Mieloides/imunologia , Células Mieloides/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Animais , Calgranulina A/genética , Calgranulina B/genética , Colesterol na Dieta/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Fenótipo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Receptor 4 Toll-Like/metabolismoRESUMO
E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.
Assuntos
Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Ciclina E/biossíntese , Quinase 2 Dependente de Ciclina/biossíntese , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas Oncogênicas/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Ciclinas/biossíntese , Ciclinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/genéticaRESUMO
Macrophages are key regulators of liver fibrosis progression and regression in nonalcoholic steatohepatitis (NASH). Liver macrophages comprise resident phagocytes, Kupffer cells, and monocyte-derived cells, which are recruited through the chemokine receptor C-C motif chemokine receptor 2 (CCR2). We aimed at elucidating the therapeutic effects of inhibiting monocyte infiltration in NASH models by using cenicriviroc (CVC), an oral dual chemokine receptor CCR2/CCR5 antagonist that is under clinical evaluation. Human liver tissues from NASH patients were analyzed for CCR2+ macrophages, and administration of CVC was tested in mouse models of steatohepatitis, liver fibrosis progression, and fibrosis regression. In human livers from 17 patients and 4 controls, CCR2+ macrophages increased parallel to NASH severity and fibrosis stage, with a concomitant inflammatory polarization of these cluster of differentiation 68+ , portal monocyte-derived macrophages (MoMF). Similar to human disease, we observed a massive increase of hepatic MoMF in experimental models of steatohepatitis and liver fibrosis. Therapeutic treatment with CVC significantly reduced the recruitment of hepatic Ly-6C+ MoMF in all models. In experimental steatohepatitis with obesity, therapeutic CVC application significantly improved insulin resistance and hepatic triglyceride levels. In fibrotic steatohepatitis, CVC treatment ameliorated histological NASH activity and hepatic fibrosis. CVC inhibited the infiltration of Ly-6C+ monocytes, without direct effects on macrophage polarization, hepatocyte fatty acid metabolism, or stellate cell activation. Importantly, CVC did not delay fibrosis resolution after injury cessation. RNA sequencing analysis revealed that MoMF, but not Kupffer cells, specifically up-regulate multiple growth factors and cytokines associated with fibrosis progression, while Kupffer cells activated pathways related to inflammation initiation and lipid metabolism. CONCLUSION: Pharmacological inhibition of CCR2+ monocyte recruitment efficiently ameliorates insulin resistance, hepatic inflammation, and fibrosis, corroborating the therapeutic potential of CVC in patients with NASH. (Hepatology 2018;67:1270-1283).
Assuntos
Antagonistas dos Receptores CCR5/farmacologia , Imidazóis/farmacologia , Cirrose Hepática/tratamento farmacológico , Monócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Adulto , Idoso , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Resistência à Insulina , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , SulfóxidosRESUMO
Somatic copy number (CN) alterations are major drivers of tumorigenesis and growth. Although next-generation sequencing (NGS) technologies enable a deep genomic analysis of cancers, the analysis of the data remains subject to biases and multiple sources of error, including varying local read coverage. The currently existing algorithms for NGS-based detection of CN abberations do not incorporate information on the local coverage quality. We have developed a new algorithm, copy number estimation with controlled support (CoNCoS) that increases the accuracy of CN estimation in paired tumor/normal exome sequencing data sets by assessing and optimizing the support for a site-specific CN estimate. We show by simulations and in a benchmarking study against single nucleotide polymorphism (SNP) microarray data that our approach outperforms the commonly used methods CNAnorm and VarScan2. Our algorithm is suitable to increase the accuracy of somatic CN analysis by a support-optimized estimation approach.
Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Neoplasias/genética , Biologia Computacional , Simulação por Computador , DNA de Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/estatística & dados numéricosRESUMO
Target enrichment strategies are a very common approach to sequence a predefined part of an individual's genome using second-generation sequencing technologies. While highly dependent on the technology and the target sequences selected, the performance of the various assays is also variable between samples and is influenced by the way how the libraries are handled in the laboratory. Here, we show how to find detailed information about the enrichment performance using a novel software package called NGSrich, which we developed as a part of a whole-exome resequencing pipeline in a medium-sized genomics center. Our software is suitable for high-throughput use and the results can be shared using HTML and a web server. Finally, we have sequenced exome-enriched DNA libraries of 18 human individuals using three different enrichment products and used our new software for a comparative analysis of their performance.