Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627876

RESUMO

One of the most common and deadly diseases in the world is lung cancer. Only early identification of lung cancer can increase a patient's probability of survival. A frequently used modality for the screening and diagnosis of lung cancer is computed tomography (CT) imaging, which provides a detailed scan of the lung. In line with the advancement of computer-assisted systems, deep learning techniques have been extensively explored to help in interpreting the CT images for lung cancer identification. Hence, the goal of this review is to provide a detailed review of the deep learning techniques that were developed for screening and diagnosing lung cancer. This review covers an overview of deep learning (DL) techniques, the suggested DL techniques for lung cancer applications, and the novelties of the reviewed methods. This review focuses on two main methodologies of deep learning in screening and diagnosing lung cancer, which are classification and segmentation methodologies. The advantages and shortcomings of current deep learning models will also be discussed. The resultant analysis demonstrates that there is a significant potential for deep learning methods to provide precise and effective computer-assisted lung cancer screening and diagnosis using CT scans. At the end of this review, a list of potential future works regarding improving the application of deep learning is provided to spearhead the advancement of computer-assisted lung cancer diagnosis systems.

2.
Diagnostics (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443574

RESUMO

Glaucoma is a chronic eye disease that may lead to permanent vision loss if it is not diagnosed and treated at an early stage. The disease originates from an irregular behavior in the drainage flow of the eye that eventually leads to an increase in intraocular pressure, which in the severe stage of the disease deteriorates the optic nerve head and leads to vision loss. Medical follow-ups to observe the retinal area are needed periodically by ophthalmologists, who require an extensive degree of skill and experience to interpret the results appropriately. To improve on this issue, algorithms based on deep learning techniques have been designed to screen and diagnose glaucoma based on retinal fundus image input and to analyze images of the optic nerve and retinal structures. Therefore, the objective of this paper is to provide a systematic analysis of 52 state-of-the-art relevant studies on the screening and diagnosis of glaucoma, which include a particular dataset used in the development of the algorithms, performance metrics, and modalities employed in each article. Furthermore, this review analyzes and evaluates the used methods and compares their strengths and weaknesses in an organized manner. It also explored a wide range of diagnostic procedures, such as image pre-processing, localization, classification, and segmentation. In conclusion, automated glaucoma diagnosis has shown considerable promise when deep learning algorithms are applied. Such algorithms could increase the accuracy and efficiency of glaucoma diagnosis in a better and faster manner.

3.
Diagnostics (Basel) ; 12(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35328192

RESUMO

Pterygium is an eye condition that causes the fibrovascular tissues to grow towards the corneal region. At the early stage, it is not a harmful condition, except for slight discomfort for the patients. However, it will start to affect the eyesight of the patient once the tissues encroach towards the corneal region, with a more serious impact if it has grown into the pupil region. Therefore, this condition needs to be identified as early as possible to halt its growth, with the use of simple eye drops and sunglasses. One of the associated risk factors for this condition is a low educational level, which explains the reason that the majority of the patients are not aware of this condition. Hence, it is important to develop an automated pterygium screening system based on simple imaging modalities such as a mobile phone camera so that it can be assessed by many people. During the early stage of automated pterygium screening system development, conventional machine learning techniques such as support vector machines and artificial neural networks are the de facto algorithms to detect the presence of pterygium tissues. However, with the arrival of the deep learning era, coupled with the availability of large training data, deep learning networks have replaced the conventional networks in screening for the pterygium condition. The deep learning networks have been successfully implemented for three major purposes, which are to classify an image regarding whether there is the presence of pterygium tissues or not, to localize the lesion tissues through object detection methodology, and to semantically segment the lesion tissues at the pixel level. This review paper summarizes the type, severity, risk factors, and existing state-of-the-art technology in automated pterygium screening systems. A few available datasets are also discussed in this paper for both classification and segmentation tasks. In conclusion, a computer-assisted pterygium screening system will benefit many people all over the world, especially in alerting them to the possibility of having this condition so that preventive actions can be advised at an early stage.

4.
Diagnostics (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34441431

RESUMO

Since the start of the COVID-19 pandemic at the end of 2019, more than 170 million patients have been infected with the virus that has resulted in more than 3.8 million deaths all over the world. This disease is easily spreadable from one person to another even with minimal contact, even more for the latest mutations that are more deadly than its predecessor. Hence, COVID-19 needs to be diagnosed as early as possible to minimize the risk of spreading among the community. However, the laboratory results on the approved diagnosis method by the World Health Organization, the reverse transcription-polymerase chain reaction test, takes around a day to be processed, where a longer period is observed in the developing countries. Therefore, a fast screening method that is based on existing facilities should be developed to complement this diagnosis test, so that a suspected patient can be isolated in a quarantine center. In line with this motivation, deep learning techniques were explored to provide an automated COVID-19 screening system based on X-ray imaging. This imaging modality is chosen because of its low-cost procedures that are widely available even in many small clinics. A new convolutional neural network (CNN) model is proposed instead of utilizing pre-trained networks of the existing models. The proposed network, Residual-Shuffle-Net, comprises four stacks of the residual-shuffle unit followed by a spatial pyramid pooling (SPP) unit. The architecture of the residual-shuffle unit follows an hourglass design with reduced convolution filter size in the middle layer, where a shuffle operation is performed right after the split branches have been concatenated back. Shuffle operation forces the network to learn multiple sets of features relationship across various channels instead of a set of global features. The SPP unit, which is placed at the end of the network, allows the model to learn multi-scale features that are crucial to distinguish between the COVID-19 and other types of pneumonia cases. The proposed network is benchmarked with 12 other state-of-the-art CNN models that have been designed and tuned specially for COVID-19 detection. The experimental results show that the Residual-Shuffle-Net produced the best performance in terms of accuracy and specificity metrics with 0.97390 and 0.98695, respectively. The model is also considered as a lightweight model with slightly more than 2 million parameters, which makes it suitable for mobile-based applications. For future work, an attention mechanism can be integrated to target certain regions of interest in the X-ray images that are deemed to be more informative for COVID-19 diagnosis.

5.
Diagnostics (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204479

RESUMO

Pterygium is an eye condition that is prevalent among workers that are frequently exposed to sunlight radiation. However, most of them are not aware of this condition, which motivates many volunteers to set up health awareness booths to give them free health screening. As a result, a screening tool that can be operated on various platforms is needed to support the automated pterygium assessment. One of the crucial functions of this assessment is to extract the infected regions, which directly correlates with the severity levels. Hence, Group-PPM-Net is proposed by integrating a spatial pyramid pooling module (PPM) and group convolution to the deep learning segmentation network. The system uses a standard mobile phone camera input, which is then fed to a modified encoder-decoder convolutional neural network, inspired by a Fully Convolutional Dense Network that consists of a total of 11 dense blocks. A PPM is integrated into the network because of its multi-scale capability, which is useful for multi-scale tissue extraction. The shape of the tissues remains relatively constant, but the size will differ according to the severity levels. Moreover, group and shuffle convolution modules are also integrated at the decoder side of Group-PPM-Net by placing them at the starting layer of each dense block. The addition of these modules allows better correlation among the filters in each group, while the shuffle process increases channel variation that the filters can learn from. The results show that the proposed method obtains mean accuracy, mean intersection over union, Hausdorff distance, and Jaccard index performances of 0.9330, 0.8640, 11.5474, and 0.7966, respectively.

6.
Diagnostics (Basel) ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923215

RESUMO

Skeletal bone age assessment using X-ray images is a standard clinical procedure to detect any anomaly in bone growth among kids and babies. The assessed bone age indicates the actual level of growth, whereby a large discrepancy between the assessed and chronological age might point to a growth disorder. Hence, skeletal bone age assessment is used to screen the possibility of growth abnormalities, genetic problems, and endocrine disorders. Usually, the manual screening is assessed through X-ray images of the non-dominant hand using the Greulich-Pyle (GP) or Tanner-Whitehouse (TW) approach. The GP uses a standard hand atlas, which will be the reference point to predict the bone age of a patient, while the TW uses a scoring mechanism to assess the bone age using several regions of interest information. However, both approaches are heavily dependent on individual domain knowledge and expertise, which is prone to high bias in inter and intra-observer results. Hence, an automated bone age assessment system, which is referred to as Attention-Xception Network (AXNet) is proposed to automatically predict the bone age accurately. The proposed AXNet consists of two parts, which are image normalization and bone age regression modules. The image normalization module will transform each X-ray image into a standardized form so that the regressor network can be trained using better input images. This module will first extract the hand region from the background, which is then rotated to an upright position using the angle calculated from the four key-points of interest. Then, the masked and rotated hand image will be aligned such that it will be positioned in the middle of the image. Both of the masked and rotated images will be obtained through existing state-of-the-art deep learning methods. The last module will then predict the bone age through the Attention-Xception network that incorporates multiple layers of spatial-attention mechanism to emphasize the important features for more accurate bone age prediction. From the experimental results, the proposed AXNet achieves the lowest mean absolute error and mean squared error of 7.699 months and 108.869 months2, respectively. Therefore, the proposed AXNet has demonstrated its potential for practical clinical use with an error of less than one year to assist the experts or radiologists in evaluating the bone age objectively.

7.
Comput Methods Programs Biomed ; 154: 71-78, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29249348

RESUMO

BACKGROUND AND BJECTIVE: Pterygium is an ocular disease caused by fibrovascular tissue encroachment onto the corneal region. The tissue may cause vision blurring if it grows into the pupil region. In this study, we propose an automatic detection method to differentiate pterygium from non-pterygium (normal) cases on the basis of frontal eye photographed images, also known as anterior segment photographed images. METHODS: The pterygium screening system was tested on two normal eye databases (UBIRIS and MILES) and two pterygium databases (Australia Pterygium and Brazil Pterygium). This system comprises four modules: (i) a preprocessing module to enhance the pterygium tissue using HSV-Sigmoid; (ii) a segmentation module to differentiate the corneal region and the pterygium tissue; (iii) a feature extraction module to extract corneal features using circularity ratio, Haralick's circularity, eccentricity, and solidity; and (iv) a classification module to identify the presence or absence of pterygium. System performance was evaluated using support vector machine (SVM) and artificial neural network. RESULTS: The three-step frame differencing technique was introduced in the corneal segmentation module. The output image successfully covered the region of interest with an average accuracy of 0.9127. The performance of the proposed system using SVM provided the most promising results of 88.7%, 88.3%, and 95.6% for sensitivity, specificity, and area under the curve, respectively. CONCLUSION: A basic platform for computer-aided pterygium screening was successfully developed using the proposed modules. The proposed system can classify pterygium and non-pterygium cases reasonably well. In our future work, a standard grading system will be developed to identify the severity of pterygium cases. This system is expected to increase the awareness of communities in rural areas on pterygium.


Assuntos
Segmento Anterior do Olho/diagnóstico por imagem , Aumento da Imagem/métodos , Fotografação/métodos , Pterígio/diagnóstico por imagem , Área Sob a Curva , Córnea/diagnóstico por imagem , Sistemas de Gerenciamento de Base de Dados , Humanos , Modelos Teóricos , Rede Nervosa , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA