Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Syst Evol ; 9: 161-200, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35978986

RESUMO

Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here. Citation: Crous PW, Sandoval-Denis M, Costa MM, Groenewald JZ, van Iperen AL, Starink-Willemse M, Hernández-Restrepo M, Kandemir H, Ulaszewski B, de Boer W, Abdel-Azeem AM, Abdollahzadeh J, Akulov A, Bakhshi M, Bezerra JDP, Bhunjun CS, Câmara MPS, Chaverri P, Vieira WAS, Decock CA, Gaya E, Gené J, Guarro J, Gramaje D, Grube M, Gupta VK, Guarnaccia V, Hill R, Hirooka Y, Hyde KD, Jayawardena RS, Jeewon R, Jurjevic Z, Korsten L, Lamprecht SC, Lombard L, Maharachchikumbura SSN, Polizzi G, Rajeshkumar KC, Salgado-Salazar C, Shang Q-J, Shivas RG, Summerbell RC, Sun GY, Swart WJ, Tan YP, Vizzini A, Xia JW, Zare R, González CD, Iturriaga T, Savary O, Coton M, Coton E, Jany J-L, Liu C, Zeng Z-Q, Zhuang W-Y, Yu Z-H, Thines M (2022). Fusarium and allied fusarioid taxa (FUSA). 1. Fungal Systematics and Evolution 9: 161-200. doi: 10.3114/fuse.2022.09.08.

2.
Stud Mycol ; 98: 100116, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34466168

RESUMO

Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).

3.
Plant Dis ; 93(5): 555, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-30764167

RESUMO

Powdery mildew infections were observed on Capparis spinosa plants in Wadi El-Arbaein, Saint Katherine Protectorate, Egypt (28°32'43.1″N, 33°57'81″E, altitude 1,663 m) in the early fall to the end of winter of 2007 and 2008 when temperatures vary from the lowest mean value of 2.8°C to the highest mean value of 26.5°C. Symptoms first appeared as white, circular patches on the adaxial leaf surface (<1.3 cm in diameter), and as the disease progressed, both leaf surfaces were infected and these chlorotic areas eventually turned to necrotic lesions. Light microscopy revealed that the disease was caused by the anamorph stage of a powdery mildew fungus. Mycelium is predominantly endophytic with the presence of conidiophores emerging through leaf stomata. Conidiophores were simple or branched one or two times at random positions, 55 to 140 × 4.5 to 6 µm, producing conidia singly, and followed by two to three straight cells. Primary conidia were pyriform (68.9 × 18.5 µm) with a tapering end while secondary conidia were more cylindrical (59.1 × 18.0 µm). Mature conidia were hyaline, without distinct fibrosin bodies, and with angular/reticulated wrinkling of the outer walls. On the basis of these characteristics, the causal agent was identified as Oidiopsis taurica (1,3). The teleomorphic stage of the fungus was not observed. Pathogenicity tests were performed by inoculating three, potted, healthy C. spinosa plants with a fresh conidial suspension collected from powdery mildew colonies found on the infected plants (1 × 104 conidia/ml) under the same field conditions. After 15 to 17 days, symptoms and signs of powdery mildew developed on the foliage of inoculated plants. Herbarium specimens of C. spinosa leaves infected with O. taurica were deposited at the Herbarium of Botany Department (SCU), Faculty of Science, Suez Canal University, Egypt. To our knowledge, this is the first record of a powdery mildew disease on C. spinosa in Egypt. Recently, Leveillula taurica, the teleomorph stage of O. taurica, was reported from C. spinosa in Turkey (2). References: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987. (2) H. Kavak. Plant Pathol. 53:809, 2004. (3) J. Palti. Bot. Rev. 54:423, 1988.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA