Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 12(1): 308, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051875

RESUMO

BACKGROUND AND AIM: Deleterious cutaneous tissue damages could result from exposure to thermal trauma, which could be ameliorated structurally and functionally through therapy via the most multipotent progenitor bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to induce burns and examine the effect of BM-MSCs during a short and long period of therapy. MATERIAL AND METHODS: Ninety albino rats were divided into three groups: group I (control); group II (burn model), the animals were exposed to the preheated aluminum bar at 100°C for 15 s; and group III (the burned animals subcutaneously injected with BM-MSCs (2×106 cells/ ml)); they were clinically observed and sacrificed at different short and long time intervals, and skin samples were collected for histopathological and immunohistochemical examination and analysis of different wound healing mediators via quantitative polymerase chain reaction (qPCR). RESULTS: Subcutaneous injection of BM-MSCs resulted in the decrease of the wound contraction rate; the wound having a pinpoint appearance and regular arrangement of the epidermal layer with thin stratum corneum; decrease in the area percentages of ADAMs10 expression; significant downregulation of transforming growth factor-ß (TGF-ß), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), metalloproteinase-9 (MMP-9), and microRNA-21; and marked upregulation of heat shock protein-90α (HSP-90α) especially in late stages. CONCLUSION: BM-MSCs exhibited a powerful healing property through regulating the mediators of wound healing and restoring the normal skin structures, reducing the scar formation and the wound size.


Assuntos
Queimaduras , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Animais , Queimaduras/terapia , Cicatriz , Ratos , Cicatrização
2.
Environ Sci Pollut Res Int ; 26(35): 36063-36072, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745806

RESUMO

Carbon nanotubes (CNTs) are extensively used in nanotechnology due to their unique physico-chemical properties. CNTs were implicated in many disorders connected with human health. So, we aimed in this study to provide new insight into the role of aqueous C. burmannii in treating the possible hepatotoxic effects of multi-walled carbon nanotube (MWCNTs) exposure. A total of 32 male albino rats were divided into 4 groups: control group, cinnamon-treated group, MWCNT-treated, and cinnamon- and MWCNT-treated group. To achieve the aim of this study, evaluation of percentage change of body weight, oxidant, and antioxidant status including lipid peroxidation (LPO), nitrite, total thiols, glutathione contents (GSH), the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S transferase (GST) was done. Histopathological examination and the rate of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-1 (COX-1), and tumor necrotic factor-α were performed. Oral administration of aqueous C. burmannii to those MWCNT-treated rats resulted in a significant reduction in LPO and total thiol contents with a significant elevation in the activities of SOD, CAT, and GPX, while GSH content and GST activity were not significantly affected. We observed a significant downregulation in the rate of previous pro-inflammatory cytokines. All this improvement in these examined markers resulted in a significant modulation in the hepatic histopathological lesions caused by MWCNTs. Aqueous C. burmannii extract exhibited a potential defensive effect on the hepatic injury triggered by MWCNTs through upgrading the antioxidant system and downregulating the rate of pro-inflammatory cytokines.


Assuntos
Anti-Inflamatórios/farmacologia , Cinnamomum/fisiologia , Nanotubos de Carbono/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas , Citocinas , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA