Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 694: 115614, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996899

RESUMO

Nasal ions environment plays a crucial role in maintaining nasal physiology and supports olfactory transmission. Addressing the limited research on nasal ion levels and their association with olfactory function, paper-based sensors were developed for determination of sodium, potassium, calcium and chloride in the nasal mucus of healthy volunteers and patients with olfactory dysfunction. Multi-walled carbon nanotubes and carbon quantum dots from beetroot were incorporated into paper substrate where sensors were designed with ion association complexes for sodium, potassium, calcium and chloride enhancing the recognition sensing capabilities. The sensors composition was optimized, including ion-exchange materials and plasticizers, to enhance sensitivity and selectivity. The performance of the sensors is evaluated based on Nernstian slope, dynamic range, detection limit and response time. Selectivity of the sensors was tested and the results demonstrated high selectivity for the target ions. The sensors were successfully determined sodium, potassium, calcium and chloride levels in nasal mucus of healthy volunteers and patients with olfactory dysfunction. The results revealed elevated calcium levels in patients with olfactory dysfunction, highlighting associated diagnostic implications. This suggests that the proposed sensors could serve as a diagnostic tool for olfactory evaluation, particularly in resource-constrained settings where access to advanced diagnostic tools is limited.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39001919

RESUMO

PURPOSE: Olfactory dysfunction is increasingly common among COVID-19 patients, impacting their well-being. Reports have demonstrated decreased levels of cyclic adenosine monophosphate and cyclic guanosine monophosphate among patients with chronic olfactory dysfunction. A prospective randomized clinical trial was developed to demonstrate the efficacy of an oral forskolin regimen treatment, an adenylyl cyclase activator that raises intracellular levels of cyclic adenosine monophosphate, for the treatment of olfactory dysfunction following COVID-19, compared to placebo regimen. METHODS: The study enrolled 285 participants with persistent olfactory dysfunction post COVID-19 infection, randomly assigning them to receive either placebo capsules (n = 120) or oral forskolin capsules (n = 165). Follow-up was conducted to track progress, with 18 participants from the placebo group and 12 from the forskolin group lost during this period. Olfactory function was assessed using the "Sniffin' Sticks" test, measuring threshold, discrimination and identification scores before and after treatment. RESULTS: Subjects administered forskolin capsules demonstrated a significant enhancement in their composite TDI (threshold, discrimination and identification) score, suggesting a notable amelioration in olfactory functionality. Moreover, the discrimination and identification scores notably improved within the forskolin group. Conversely, no significant alterations were observed in the threshold scores. CONCLUSION: This study suggests that forskolin can contribute potentially to improve chronic olfactory dysfunction post COVID-19. TRIAL REGISTRATION: DFM-IRB00012367-23-10-001.

3.
Luminescence ; 39(7): e4812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965972

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a neurological condition frequently identified in early childhood and frequently co-occurs with other neuropsychological disorders, particularly autism. Viloxazine hydrochloride, a non-stimulant medication, has recently gained approval for treating attention-deficit hyperactivity disorder. This paper describes the first spectrofluorimetric method for precisely measuring the content of viloxazine in pharmaceutical capsules and rat plasma. This method employed NBD-Cl (4-chloro-7-nitrobenzo-2-oxa-1,3-diazole) as a fluorescent probe, which transformed viloxazine in an alkaline environment into a remarkably sensitive fluorescent adduct. Upon excitation at 476 nm, this adduct becomes detectable at a wavelength of 536 nm. The method was validated using ICH criteria, revealing acceptable linearity across a concentration range of 200-2000 ng/ml and high sensitivity with LOD and LOQ values of 46.774 ng/ml and 141.741 ng/ml, respectively. This method was adeptly applied in a pharmacokinetic study of viloxazine in rat plasma following a single oral dose (10 mg/kg), yielding a mean peak plasma concentration (Cmax) of 1721 ng/ml, achieved within 1.5 h. Furthermore, the environmental impact of the technique was assessed using two greenness assessment tools, revealing a notable level of eco-friendliness and sustainability.


Assuntos
Corantes Fluorescentes , Espectrometria de Fluorescência , Viloxazina , Animais , Ratos , Corantes Fluorescentes/química , Viloxazina/química , Viloxazina/farmacocinética , Viloxazina/sangue , Masculino , Estrutura Molecular , 4-Cloro-7-nitrobenzofurazano/química , Administração Oral
4.
BMC Chem ; 18(1): 129, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978116

RESUMO

HIV treatment has greatly improved over the years, with the introduction of antiretroviral drugs that target the virus and suppress its replication. Dolutegravir and lamivudine are two such antiretroviral drugs that are commonly used in HIV treatment regimens. Herein, three spectrophotometric methods manipulating ratio spectra were developed for the simultaneous analysis of dolutegravir and lamivudine in their binary mixtures. These methods include mathematical processing stages like ratio difference method or signal processing approaches such as the first derivative of the ratio spectra, and continuous wavelet transform. The developed spectrophotometric methods exploit the characteristic spectral differences between dolutegravir and lamivudine in order to quantify them simultaneously. These methods have shown promising results in terms of sensitivity and selectivity as validated per the ICH guidelines. Moreover, these methods offer a straightforward and economical alternative to more intricate analytical methodologies like high-performance liquid chromatography. By incorporating the analytical eco-scale and AGREE for greenness evaluation of the proposed methods, we can further ensure that these techniques are effective and environmentally friendly, aligning with the principles of green chemistry. This evaluation will provide a comprehensive understanding of the environmental friendliness of these spectrophotometric methods in pharmaceutical analysis.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124543, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850821

RESUMO

Futibatinib is a powerful inhibitor of fibroblast growth factor receptors that impedes its phosphorylation and subsequently leading to a reduction in in cell viability across various cell lines. Futibatinib was approved for initial use as an effective treatment for several diseases, including non-small cell lung cancer and breast cancer. Herein, a novel selective fluorescence probe was created for futibatinib quantification in various matrices, including pharmaceutical formulation and human plasma. The technique primarily depends on futibatinib's chemical conversion into a fluorescent product through a reaction with trimethylamine and bromoacetyl bromide. The created fluorescent probe exhibits maximum emission peak at 338 nm upon excitation at 248 nm. The method provided a low detection limit of 0.120 ng/mL and maintained a linear concentration-dependent relationship across the range of 1-200 ng/mL. High sensitivity, accuracy and precision were demonstrated for futibatinib quantification in pharmaceutical formulation and spiked plasma matrix by the method, which was validated in accordance with ICH requirements.


Assuntos
Limite de Detecção , Espectrometria de Fluorescência , Humanos , Espectrometria de Fluorescência/métodos , Reprodutibilidade dos Testes , Corantes Fluorescentes/química
6.
Anal Biochem ; 692: 115549, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38679192

RESUMO

Ionic microenvironment of the nasal secretions especially calcium ions play essential role in the olfactory transmission. However, there is a critical need to determine the free calcium levels in healthy people's nasal secretions in contrast to those of patients with olfactory impairment. A selective spectrofluorometric method was created to quantify nasal calcium levels utilizing its quenching ability to the fluorescence of the functionalized carbon quantum dots. The surface of carbon quantum dots was functionalized with calcium ionophore A23187 and ion association complex, calcium phosphotungstate, to improve the selectively to quantify calcium ions. The functionalized carbon quantum dots exhibited a concentration-dependent fluorescence quenching upon interaction with calcium ions. Different factors influencing the quenching process were done to provide efficient analytical process. The new method, demonstrated accurate calcium determination over the concentration range of 200-4000 ng/mL. The suggested technique was used to measure the calcium in the nasal secretions of both healthy people and patients with olfactory impairment. The findings revealed significantly higher calcium levels in the patient with olfactory dysfunction (healthy vs. patient; 735 ± 20 ng/mL vs. 2987 ± 37 ng/mL, p < 0.05).


Assuntos
Cálcio , Espectrometria de Fluorescência , Humanos , Cálcio/análise , Cálcio/metabolismo , Espectrometria de Fluorescência/métodos , Pontos Quânticos/química , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/química , Masculino , Adulto , Olfato , Feminino
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123836, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181624

RESUMO

Finerenone, a non-steroidal mineralocorticoid receptor antagonist, has gained recent approval for treating cardiovascular and kidney-related conditions. Herein, an innovative fluorescence chemo sensor was developed for the determination of finerenone in the pharmaceutical dosage form and the plasma matrix. The method is basically based on chemical transformation of finerenone into a fluorescent product through sequential reactions. This transformation occurs through a sequence of steps involving the interaction of finerenone with trimethylamine, resulting in the formation of a nucleophilic intermediate that subsequently reacts with bromoacetyl bromide to form fluorescent product, (S)-N-(2-bromoacetyl)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide. The formed fluorescent product exhibits defined emission peak at 338 nm when excited at 248 nm. Significant concentration-dependent fluorescence enhancement was obtained enabling precise finerenone determination in the pharmaceutical formulation and plasma matrix. The method was optimized and validated providing sensitive determination over linearity range of 1-200 ng/mL with a lower limit of detection at 0.280 ng/mL. This strategy provides an efficient, economical substitute and straightforward, more sensitive analytical method for finerenone assessment in various matrices, in contrast to the previously published method, high-performance liquid chromatography-tandem mass spectrometry, which is expensive and time-consuming.


Assuntos
Diabetes Mellitus Tipo 2 , Antagonistas de Receptores de Mineralocorticoides , Humanos , Composição de Medicamentos , Naftiridinas , Preparações Farmacêuticas
8.
RSC Adv ; 14(6): 4089-4096, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38288149

RESUMO

This study presents the development of an eco-friendly and highly selective mitrogen-doped carbon quantum dot based sensor (N-CQDs) for the detection of gabapentin - a commonly misused drug. A detailed characterization of N-CQDs spectral features and their interaction with gabapentin is provided. The optimal conditions for sensing, including pH value, buffer volume, N-CQDs concentration, and incubation time, were established. The results showed excellent fluorescence quenching at 475 nm (λex = 380 nm) due to the dynamic quenching mechanism, and the sensor demonstrated excellent linearity in the 0.5-8.0 µg mL-1 concentration range with correlation coefficients of more than 0.999, a limit of detection (LOD) of 0.160 and limit of quantification (LOQ) of 0.480 µg mL-1. The accuracy of the proposed sensor was acceptable with a mean accuracy of 99.91 for gabapentin detection. In addition, precision values were within the acceptable range, with RSD% below 2% indicating good repeatability and reproducibility of the sensor. Selectivity was validated using common excipients and pooled plasma samples. The proposed sensor accurately estimated gabapentin concentration in commercial pharmaceutical formulations and spiked plasma samples, exhibiting excellent comparability with previously published methods. The 'greenness' of the sensing system was evaluated using the Analytical GREEnness calculator, revealing low environmental impact and strong alignment with green chemistry principles with a greenness score of 0.76. Thus, the developed N-CQDs-based sensor offers a promising, eco-friendly, and effective tool for gabapentin detection in various situations, ranging from clinical therapeutics to forensic science.

9.
Ann Otol Rhinol Laryngol ; 133(2): 196-204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37688447

RESUMO

BACKGROUND: The defects of the upper third of the auricle are considered significant reconstructive challenges, as they require frequent operations with a high risk of morbidity at the donor site and result in unacceptable cosmetic abnormalities. OBJECTIVE: Is to perform the reconstruction of a full-thickness auricular defect located in the upper third of the ear using a conchal cartilage graft with postauricular flap coverage, aiming to minimize both donor and recipient morbidity. PATIENTS AND METHODS: The current study included 20 patients with unilateral upper-third auricular defects. The repair involved 2 components: a cartilage graft from the concha to provide structural support and a flap for coverage. Follow-up was conducted for 6 months after the operation. RESULTS: Successful outcomes were achieved in both subjective and doctors' assessments. Regarding subjective outcomes, 85% of the patients reported high satisfaction (P < .001). In terms of doctors' subjective assessment, 90% of the patients had excellent results (P < .001). Mild early and postoperative complications, if encountered, resolved spontaneously. CONCLUSION: The use of a combined conchal cartilage graft and postauricular flap in treating a full-thickness upper third auricular defect is safe and effective, with no major complications. The technique preserves the cosmetic and functional outcomes of the auricle, providing an excellent color match and minimal donor-site morbidity.


Assuntos
Pavilhão Auricular , Procedimentos de Cirurgia Plástica , Humanos , Retalhos Cirúrgicos , Orelha Externa/cirurgia , Pavilhão Auricular/cirurgia , Cartilagem
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123710, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043294

RESUMO

Augmented least squares models such as concentration residual augmented classical least squares (CRACLS) and spectral residual augmented classical least squares (SRACLS) are powerful chemometric approaches that can be applied for spectroscopic analysis of many pharmaceutical compounds. Herein, both CRACLS and SRACL have been employed for UV spectral analysis of three antiretroviral therapy namely abacavir (ACV), lamivudine (LMV) and dolutegravir (DTG) in their ternary mixture. A partial factorial design has been utilized for calibration set construction then both CRACLS and SRACLS models have been optimized regarding the number of iterations and principal components, respectively, using a leave-one-out cross-validation procedure. It was found that a higher number of iterations and principal components were required for modelling the minor component DTG indicating more augmentation procedures to improve the models' accuracy. Validation of the proposed models was performed using external validation set of 13 mixtures and different validation parameters have been evaluated regarding models' predictive abilities. Both models showed excellent performance for analyzing ACV and LMV with relative root mean square error of prediction (RRMSEP) below 2 %. However, higher RRMSEP values around 5 % were observed for the minor component DTG suggesting that these models should be utilized with caution when analyzing minor components in mixtures. Furthermore, the suggested models have been applied for analyzing ACV, LMV and DTG in their pharmaceutical formulation and excellent agreement was observed between the suggested models and the reported chromatographic method posing these models as powerful chemometric approaches for quality control analysis of many pharmaceutical compounds.


Assuntos
Ciclopropanos , Didesoxiadenosina/análogos & derivados , Infecções por HIV , Compostos Heterocíclicos com 3 Anéis , Lamivudina , Oxazinas , Piperazinas , Piridonas , Humanos , Quimiometria , Análise dos Mínimos Quadrados , Espectrofotometria Ultravioleta/métodos , Preparações Farmacêuticas
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123711, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042122

RESUMO

Histamine is crucial for controlling a variety of physiological processes and its dysregulation is linked to various pathological conditions, including allergic disorders, autoimmune diseases and inflammatory conditions. Herein, a novel fluorescence chemo sensor was produced to measure histamine in the pure form and spiked human plasma matrix. The proposed method is based on chemical transformation of histamine into a fluorescent product, N-(2-(1H-imidazol-4-yl) ethyl)-2-bromoacetamide, exhibiting unique fluorescence properties compared to non-fluorescent histamine molecule. This transformation occurs through a sequence of chemical reactions involving the interaction of histamine with trimethylamine, resulting in the formation of a nucleophilic intermediate that subsequently reacts with electrophilic bromoacetyl bromide. The transformed fluorescent product demonstrates an emission at 340 nm after being excited at 250 nm. Significant concentration-dependent fluorescence enhancement was obtained enabling histamine determination. The procedures were examined for accuracy, precision, selectivity, and robustness in line with the ICH M10 recommendations. The method exhibits a lower limit of quantification at 0.25 ng/mL and dynamic detection throughout a linearity range of 1-200 ng/mL, providing accurate assessment of histamine in the plasma matrix.


Assuntos
Histamina , Humanos , Espectrometria de Fluorescência/métodos
12.
Sci Rep ; 13(1): 19951, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968310

RESUMO

Harmaline and harmine are naturally occurring closely related ß-carboline alkaloids found in Peganum and Banisteriopsis plants. They have historical significance in traditional practices due to their potential psychoactive and therapeutic properties. Herein, a highly sensitive spectrofluorometric method was developed for the quantifying of harmaline and harmine in diverse matrices, including pure forms, seed samples, and spiked plasma. The procedures lie in addressing the challenge of overlapping fluorescence spectra exhibited by harmaline and harmine through the incorporation of hydroxypropyl-ß-cyclodextrin, altering their chemical properties and fluorescence characteristics. Synchronous fluorescence measurements coupled with first derivative mathematical technique make it possible to distinguish between the harmaline and harmine at 419 and 456 nm, respectively. The method effectiveness is demonstrated through spectral analysis, optimization of the measurement conditions, adopting validation parameters and application to the pure form, seed samples and spiked human plasma. This methodology facilitates accurate determination of these alkaloids over the concentration range of 10─200 ng/mL. Thus, the developed approach provides a robust mean for the precise determination of harmaline and harmine, contributing to analytical chemistry's ongoing efforts to address complex challenges in quantification across diverse matrices.


Assuntos
Alcaloides , Peganum , Humanos , Harmina , Harmalina , Alcaloides/análise , Extratos Vegetais/química , Peganum/química
13.
Am J Rhinol Allergy ; 37(6): 630-637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37786364

RESUMO

BACKGROUND: COVID-19 has been associated with olfactory dysfunction in many infected patients. The rise of calcium levels in the nasal secretions plays an essential role in the olfaction process with a desensitization effect on the olfactory receptor neurons and a negative impact on the olfaction transmission. Ethylene diamine tetra acetic acid (EDTA) is a chelating agent that can bind free calcium in the nasal secretions, thereby reducing the adverse effects of calcium on olfactory function. OBJECTIVES: The objective of this work is to demonstrate the effect of intranasal EDTA on improving olfactory dysfunction following COVID-19. METHODS: Fifty patients with a history of COVID-19 and olfactory dysfunction that persisted for more than 6 months were enrolled in the current prospective randomized clinical trial. Participants were randomized into 2 equal groups. Twenty-five patients were treated with olfactory training only, while the remaining 25 patients received treatment with olfactory training and a topical nasal spray of ethylene diamine tetra acetic acid. The olfactory function was assessed before treatment and 3 months later using the Sniffin' Sticks test. Additionally, the determination of calcium level in the nasal secretions was performed using an ion-selective electrode before treatment and 3 months later. RESULTS: Eighty-eight percent of the patients treated with olfactory training in addition to EDTA exhibited clinical improvement, while 60% showed improvement in patients treated with olfactory training only. Furthermore, a significant decrease in the measured calcium level in the nasal secretions was demonstrated after the use of ethylene diamine tetra compared to patients treated with olfactory training only. CONCLUSION: Ethylene diamine tetra acetic acid may be associated with an improvement of the olfactory function post-COVID-19.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Olfato/fisiologia , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Ácido Acético/farmacologia , Ácido Acético/uso terapêutico , Cálcio/farmacologia , Cálcio/uso terapêutico , Ácido Edético/uso terapêutico , Ácido Edético/farmacologia , COVID-19/complicações , Etilenos/farmacologia , Etilenos/uso terapêutico
14.
BMC Chem ; 17(1): 120, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735663

RESUMO

BACKGROUND: Ritonavir was recently combined with nirmatrelvir in a new approved co-packaged medication form for the treatment of COVID-19. Quantitative analysis based on fluorescence spectroscopy measurement was extensively used for sensitive determination of compounds exhibited unique fluorescence features. OBJECTIVE: The main objective of this work was to develop higher sensitive cost effective spectrofluorometric method for selective determination of ritonavir in the presence of nirmatrelvir in pure form, pharmaceutical tablet as well as in spiked human plasma. METHODS: Ritonavir was found to exhibit unique native emission fluorescence at 404 nm when excited at 326 nm. On the other hand, nirmatrelvir had no emission bands when excited at 326 nm. This feature allowed selective determination of ritonavir without any interference from nirmatrelvir. The variables affecting fluorescence intensity of ritonavir were optimized in terms of sensitivity parameters and principles of green analytical chemistry. Ethanol was used a green solvent which provided efficient fluorescence intensity of the cited drug. RESULTS: The method was validated in accordance with the ICH Q2 (R1) standards in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and specificity. The described method was successfully applied for ritonavir assay over the concentration range of 2.0-20.0 ng/mL. CONCLUSION: Ritonavir determination in the spiked human plasma was successfully done with satisfactory accepted results.

15.
BMC Chem ; 17(1): 89, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501208

RESUMO

The environmentally friendly design of analytical methods is gaining interest in pharmaceutical analysis to reduce hazardous environmental impacts and improve safety and health conditions for analysts. The adaptation and integration of chemometrics in the development of environmentally friendly analytical methods is strongly recommended in the hope of promising benefits. Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of this work is to develop green, tuned spectrophotometric methods based on chemometric based models for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir has shown overlap to some extent, making simultaneous determination difficult. Three advanced chemometric models, classical least squares, principal component regression, and partial least squares, have been developed to provide resolution and spectrophotometric determination of the drugs under study. A five-level, two-factor experimental design has been used to create the described models. The spectrally recorded data of favipiravir and remdesivir has been reviewed. The noise region has been neglected as it has a negative impact on the significant data. On the other hand, the other spectral data provided relevant information about the investigated drugs. A comprehensive evaluation and interpretation of the results of the described models and a statistical comparison with accepted values have been considered. The proposed models have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form spiked human plasma. In addition, the environmental friendliness of the described models was evaluated using the analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The results showed the compliance of the described models with the environmental characteristics.

16.
BMC Chem ; 17(1): 58, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328879

RESUMO

Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.

17.
Sci Rep ; 13(1): 10049, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344521

RESUMO

A computationally-assisted and green spectrophotometric method has been developed for the determination of fostemsavir, a recently FDA-approved drug used in combination with antiretroviral drugs to treat multidrug-resistant HIV-1 infection. The method was developed using computational studies and solvent selection based on green chemistry principles. The density functional theory method was employed to identify bromophenol blue as the preferred acid dye for efficient extraction of fostemsavir. The solvent selection process involved a careful evaluation of the green ranking of solvents, which led to the use of water as the solvent. The method involved the extraction of fostemsavir with bromophenol blue to form a yellow ion-pair complex, which exhibited maximally sharp peaks at 418 nm, enabling sensitive visible spectrophotometric determination of fostemsavir in bulk and pharmaceutical preparations. The extraction procedures were optimized, and the method was demonstrated to be sensitive over the concentration range of 2-12 µg/mL fostemsavir. Furthermore, the method was evaluated with respect to green chemistry principles using the analytical eco-scale, the green analytical method index, and analytical greenness metric approach, all of which confirmed that the data obtained by the proposed method were environmentally acceptable.


Assuntos
Azul de Bromofenol , Organofosfatos , Espectrofotometria/métodos , Solventes
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122880, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37216820

RESUMO

Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.


Assuntos
Aspirina , COVID-19 , Humanos , Espectrometria de Fluorescência/métodos , Tratamento Farmacológico da COVID-19 , Etanol
19.
Am J Otolaryngol ; 44(4): 103871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018923

RESUMO

BACKGROUND: COVID-19 has been frequently demonstrated to be associated with anosmia. Calcium cations are a mainstay in the transmission of odor. One of their documented effects is feedback inhibition. Thus, it has been advocated that reducing the free intranasal calcium cations using topical chelators such as pentasodium diethylenetriamine pentaacetate (DTPA) could lead to restoration of the olfactory function in patients with post-COVID-19 anosmia. METHODOLOGY: This is a randomized controlled trial that investigated the effect of DTPA on post-COVID-19 anosmia. A total of 66 adult patients who had confirmed COVID-19 with associated anosmia that continued beyond three months of being negative for SARS-CoV-2 infection. The included patients were randomly allocated to the control group that received 0.9 % sodium chloride-containing nasal spray or the interventional group that received 2 % DTPA-containing nasal spray at a 1:1 ratio. Before treatment and 30 days post-treatment, the patients' olfactory function was evaluated using Sniffin' Sticks, and quantitative estimation of the calcium cations in the nasal mucus was done using a carbon paste ion-selective electrode test. RESULTS: Patients in the DTPA-treated group significantly improved compared to the control group in recovery from functional anosmia to hyposmia. Additionally, they showed a significant post-treatment reduction in the calcium concentration compared to the control group. CONCLUSION: This study confirmed the efficacy of DTPA in treating post-COVID-19 anosmia.


Assuntos
COVID-19 , Transtornos do Olfato , Adulto , Humanos , COVID-19/complicações , Anosmia , Transtornos do Olfato/etiologia , Transtornos do Olfato/complicações , SARS-CoV-2 , Sprays Nasais , Cálcio , Ácido Pentético/farmacologia , Olfato/fisiologia
20.
Sci Rep ; 13(1): 6165, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061601

RESUMO

Quantitative analysis of pharmaceutical compounds up to Nano gram levels is highly recommended to introduce feasible and sensitive tool for determination of the compounds in the pharmaceutical and biological samples. Nirmatrelvir plus ritonavir was recently approved in the US, the UK and Europe as a new co-packaged dosage form for the treatment of COVID-19. The objective of this work was to develop a more sensitive TLC method based on using ß-cyclodextrin as a chiral selector additive in the mobile phase for simultaneous determination of nirmatrelvir and ritonavir in pure form, pharmaceutical formulation and spiked human plasma. The analysis procedures were developed using TLC aluminum silica gel plates and methanol-water- 2% urea solution of ß-cyclodextrin (40:10:.5, by volume) as a mobile phase with UV detection at 215 nm. The developed method was successfully applied over a linearity range of 10-50 ng/band for both nirmatrelvir and ritonavir. The method was validated for limits of detection and quantitation, accuracy, precision, specificity, system suitability, and robustness. Furthermore, the eco-friendliness of the proposed method was assessed using the analytical eco-scale and the green analytical procedure index. The described method exhibited compliance with green analytical chemistry principles based on common green metric values.


Assuntos
COVID-19 , Ritonavir , Humanos , Cromatografia em Camada Fina/métodos , Tratamento Farmacológico da COVID-19 , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA